File size: 12,651 Bytes
5a256aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

import os
import subprocess
import uuid
import time
import torch
import torchaudio

# langid is used to detect language for longer text
# Most users expect text to be their own language, there is checkbox to disable it
import langid
import re
import gradio as gr
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir

class XTTS():
    def __init__(self):
        model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
        # ModelManager().download_model(model_name)
        model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
        # print("XTTS downloaded")

        config = XttsConfig()
        config.load_json(os.path.join(model_path, "config.json"))

        self.model = Xtts.init_from_config(config)
        self.model.load_checkpoint(
            config,
            checkpoint_path=os.path.join(model_path, "model.pth"),
            vocab_path=os.path.join(model_path, "vocab.json"),
            eval=True,
            use_deepspeed=True,
        )
        self.model.cuda()

        self.supported_languages = config.languages

    def predict(self, 

        prompt,

        language,

        audio_file_pth,

        voice_cleanup,

    ):
        # 模型不支持语言
        if language not in self.supported_languages:
            gr.Warning(
                f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown"
            )

            return (
                None,
                None,
                None,
                None,
            )

        language_predicted = langid.classify(prompt)[
            0
        ].strip()  # strip need as there is space at end!

        # tts expects chinese as zh-cn
        if language_predicted == "zh":
            # we use zh-cn
            language_predicted = "zh-cn"

        print(f"Detected language:{language_predicted}, Chosen language:{language}")

        speaker_wav = audio_file_pth

        # Filtering for microphone input, as it has BG noise, maybe silence in beginning and end
        # This is fast filtering not perfect

        # Apply all on demand
        lowpassfilter = denoise = trim = loudness = True

        if lowpassfilter:
            lowpass_highpass = "lowpass=8000,highpass=75,"
        else:
            lowpass_highpass = ""

        if trim:
            # better to remove silence in beginning and end for microphone
            trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,"
        else:
            trim_silence = ""

        if voice_cleanup:
            try:
                out_filename = (
                    speaker_wav + str(uuid.uuid4()) + ".wav"
                )  # ffmpeg to know output format

                # we will use newer ffmpeg as that has afftn denoise filter
                shell_command = f"ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split(
                    " "
                )

                command_result = subprocess.run(
                    [item for item in shell_command],
                    capture_output=False,
                    text=True,
                    check=True,
                )
                speaker_wav = out_filename
                print("Filtered microphone input")
            except subprocess.CalledProcessError:
                # There was an error - command exited with non-zero code
                print("Error: failed filtering, use original microphone input")
        else:
            speaker_wav = speaker_wav

        if len(prompt) < 2:
            gr.Warning("Please give a longer prompt text")
            return (
                None,
                None,
                None,
                None,
            )
        
        metrics_text = ""
        t_latent = time.time()

        # note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
        try:
            (
                gpt_cond_latent,
                speaker_embedding,
            ) = self.model.get_conditioning_latents(audio_path=speaker_wav, gpt_cond_len=30, gpt_cond_chunk_len=4, max_ref_length=60)
        except Exception as e:
            print("Speaker encoding error", str(e))
            gr.Warning(
                "It appears something wrong with reference, did you unmute your microphone?"
            )
            return (
                None,
                None,
                None,
            )

        latent_calculation_time = time.time() - t_latent
        # metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n"

        # temporary comma fix
        prompt= re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)",r"\1 \2\2",prompt)

        wav_chunks = []
        ## Direct mode
        
        print("I: Generating new audio...")
        t0 = time.time()
        out = self.model.inference(
            prompt,
            language,
            gpt_cond_latent,
            speaker_embedding,
            repetition_penalty=5.0,
            temperature=0.75,
        )
        inference_time = time.time() - t0
        print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
        metrics_text+=f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
        real_time_factor= (time.time() - t0) / out['wav'].shape[-1] * 24000
        print(f"Real-time factor (RTF): {real_time_factor}")
        metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
        torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
        return (
            "output.wav",
            metrics_text,
            speaker_wav,
        )

title = "语音克隆 Coqui🐸 XTTS"

examples = [
    [
        "Once when I was six years old I saw a magnificent picture",
        "en",
        "examples/female.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "Lorsque j'avais six ans j'ai vu, une fois, une magnifique image",
        "fr",
        "examples/male.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "Als ich sechs war, sah ich einmal ein wunderbares Bild",
        "de",
        "examples/female.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "Cuando tenía seis años, vi una vez una imagen magnífica",
        "es",
        "examples/male.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "Quando eu tinha seis anos eu vi, uma vez, uma imagem magnífica",
        "pt",
        "examples/female.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "Kiedy miałem sześć lat, zobaczyłem pewnego razu wspaniały obrazek",
        "pl",
        "examples/male.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "Un tempo lontano, quando avevo sei anni, vidi un magnifico disegno",
        "it",
        "examples/female.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "Bir zamanlar, altı yaşındayken, muhteşem bir resim gördüm",
        "tr",
        "examples/female.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "Когда мне было шесть лет, я увидел однажды удивительную картинку",
        "ru",
        "examples/female.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "Toen ik een jaar of zes was, zag ik op een keer een prachtige plaat",
        "nl",
        "examples/male.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "Když mi bylo šest let, viděl jsem jednou nádherný obrázek",
        "cs",
        "examples/female.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "当我还只有六岁的时候, 看到了一副精彩的插画",
        "zh-cn",
        "examples/female.wav",
        None,
        False,
        False,
        False,
        True,
    ],
    [
        "かつて 六歳のとき、素晴らしい絵を見ました",
        "ja",
        "examples/female.wav",
        None,
        False,
        True,
        False,
        True,
    ],
    [
        "한번은 내가 여섯 살이었을 때 멋진 그림을 보았습니다.",
        "ko",
        "examples/female.wav",
        None,
        False,
        True,
        False,
        True,
    ],
        [
        "Egyszer hat éves koromban láttam egy csodálatos képet",
        "hu",
        "examples/male.wav",
        None,
        False,
        True,
        False,
        True,
    ],
]



def main():
    with gr.Blocks(analytics_enabled=False) as demo:
        with gr.Row():
            with gr.Column():
                gr.Markdown(
                    """

                    ## 语音克隆 (Coqui TTS)

                    """
                )
            with gr.Column():
                # 用于对齐图像的占位符
                pass

        with gr.Row():
            with gr.Column():
                gr.Markdown("文本提示: 一次一两个句子最好。最多200个文本字符。")
            with gr.Column():
                gr.Markdown("语言: 选择用于合成语音的输出语言。")

        with gr.Row():
            with gr.Column():
                input_text_gr = gr.Textbox(
                    label="文本提示",
                    info="一次一两个句子最好。最多200个文本字符。",
                    value="嗨,我是你的新语音克隆。请尽量上传高质量的音频。",
                )
                language_gr = gr.Dropdown(
                    label="语言",
                    info="选择用于合成语音的输出语言",
                    choices=[
                        "en",
                        "es",
                        "fr",
                        "de",
                        "it",
                        "pt",
                        "pl",
                        "tr",
                        "ru",
                        "nl",
                        "cs",
                        "ar",
                        "zh-cn",
                        "ja",
                        "ko",
                        "hu",
                        "hi"
                    ],
                    max_choices=1,
                    value="en",
                )
                ref_gr = gr.Audio(
                    label="参考音频",
                    type="filepath",
                    value="examples/female.wav",
                    sources=["microphone", "upload"],
                )
                clean_ref_gr = gr.Checkbox(
                    label="清理参考语音",
                    value=False,
                    info="如果您的麦克风或参考语音有噪音,此选项可以改善输出。",
                )
                tts_button = gr.Button("发送", elem_id="send-btn", visible=True)


            with gr.Column():
                audio_gr = gr.Audio(label="合成音频", autoplay=True)
                out_text_gr = gr.Text(label="指标")
                ref_audio_gr = gr.Audio(label="使用的参考音频")
        with gr.Row():
            gr.Examples(examples,
                        label="示例",
                        inputs=[input_text_gr, language_gr, ref_gr, clean_ref_gr],
                        outputs=[audio_gr, out_text_gr, ref_audio_gr],
                        fn=XTTS().predict,
                        cache_examples=False,)
        tts_button.click(XTTS().predict, [input_text_gr, language_gr, ref_gr, clean_ref_gr], outputs=[audio_gr, out_text_gr, ref_audio_gr])
    return demo

if __name__ == "__main__":  
    demo = main()  
    demo.launch()