File size: 30,806 Bytes
5a256aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
import math
import trimesh
import numpy as np
import random

import torch
import torch.nn as nn
import torch.nn.functional as F

import raymarching
from .utils import custom_meshgrid, get_audio_features, euler_angles_to_matrix, convert_poses

def sample_pdf(bins, weights, n_samples, det=False):
    # This implementation is from NeRF
    # bins: [B, T], old_z_vals
    # weights: [B, T - 1], bin weights.
    # return: [B, n_samples], new_z_vals

    # Get pdf
    weights = weights + 1e-5  # prevent nans
    pdf = weights / torch.sum(weights, -1, keepdim=True)
    cdf = torch.cumsum(pdf, -1)
    cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1)
    # Take uniform samples
    if det:
        u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples).to(weights.device)
        u = u.expand(list(cdf.shape[:-1]) + [n_samples])
    else:
        u = torch.rand(list(cdf.shape[:-1]) + [n_samples]).to(weights.device)

    # Invert CDF
    u = u.contiguous()
    inds = torch.searchsorted(cdf, u, right=True)
    below = torch.max(torch.zeros_like(inds - 1), inds - 1)
    above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
    inds_g = torch.stack([below, above], -1)  # (B, n_samples, 2)

    matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
    cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
    bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)

    denom = (cdf_g[..., 1] - cdf_g[..., 0])
    denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
    t = (u - cdf_g[..., 0]) / denom
    samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])

    return samples


def plot_pointcloud(pc, color=None):
    # pc: [N, 3]
    # color: [N, 3/4]
    print('[visualize points]', pc.shape, pc.dtype, pc.min(0), pc.max(0))
    pc = trimesh.PointCloud(pc, color)
    # axis
    axes = trimesh.creation.axis(axis_length=4)
    # sphere
    sphere = trimesh.creation.icosphere(radius=1)
    trimesh.Scene([pc, axes, sphere]).show()


class NeRFRenderer(nn.Module):
    def __init__(self, opt):

        super().__init__()

        self.opt = opt
        self.bound = opt.bound
        self.cascade = 1 + math.ceil(math.log2(opt.bound))
        self.grid_size = 128
        self.density_scale = 1

        self.min_near = opt.min_near
        self.density_thresh = opt.density_thresh
        self.density_thresh_torso = opt.density_thresh_torso

        self.exp_eye = opt.exp_eye
        self.test_train = opt.test_train
        self.smooth_lips = opt.smooth_lips

        self.torso = opt.torso
        self.cuda_ray = opt.cuda_ray

        # prepare aabb with a 6D tensor (xmin, ymin, zmin, xmax, ymax, zmax)
        # NOTE: aabb (can be rectangular) is only used to generate points, we still rely on bound (always cubic) to calculate density grid and hashing.
        aabb_train = torch.FloatTensor([-opt.bound, -opt.bound/2, -opt.bound, opt.bound, opt.bound/2, opt.bound])
        aabb_infer = aabb_train.clone()
        self.register_buffer('aabb_train', aabb_train)
        self.register_buffer('aabb_infer', aabb_infer)

        # individual codes
        self.individual_num = opt.ind_num

        self.individual_dim = opt.ind_dim
        if self.individual_dim > 0:
            self.individual_codes = nn.Parameter(torch.randn(self.individual_num, self.individual_dim) * 0.1) 
        
        if self.torso:
            self.individual_dim_torso = opt.ind_dim_torso
            if self.individual_dim_torso > 0:
                self.individual_codes_torso = nn.Parameter(torch.randn(self.individual_num, self.individual_dim_torso) * 0.1) 

        # optimize camera pose
        self.train_camera = self.opt.train_camera
        if self.train_camera:
            self.camera_dR = nn.Parameter(torch.zeros(self.individual_num, 3)) # euler angle
            self.camera_dT = nn.Parameter(torch.zeros(self.individual_num, 3)) # xyz offset

        # extra state for cuda raymarching
    
        # 3D head density grid
        density_grid = torch.zeros([self.cascade, self.grid_size ** 3]) # [CAS, H * H * H]
        density_bitfield = torch.zeros(self.cascade * self.grid_size ** 3 // 8, dtype=torch.uint8) # [CAS * H * H * H // 8]
        self.register_buffer('density_grid', density_grid)
        self.register_buffer('density_bitfield', density_bitfield)
        self.mean_density = 0
        self.iter_density = 0

        # 2D torso density grid
        if self.torso:
            density_grid_torso = torch.zeros([self.grid_size ** 2]) # [H * H]
            self.register_buffer('density_grid_torso', density_grid_torso)
        self.mean_density_torso = 0

        # step counter
        step_counter = torch.zeros(16, 2, dtype=torch.int32) # 16 is hardcoded for averaging...
        self.register_buffer('step_counter', step_counter)
        self.mean_count = 0
        self.local_step = 0
        
        # decay for enc_a
        if self.smooth_lips:
            self.enc_a = None
    
    def forward(self, x, d):
        raise NotImplementedError()

    # separated density and color query (can accelerate non-cuda-ray mode.)
    def density(self, x):
        raise NotImplementedError()

    def color(self, x, d, mask=None, **kwargs):
        raise NotImplementedError()

    def reset_extra_state(self):
        if not self.cuda_ray:
            return 
        # density grid
        self.density_grid.zero_()
        self.mean_density = 0
        self.iter_density = 0
        # step counter
        self.step_counter.zero_()
        self.mean_count = 0
        self.local_step = 0


    def run_cuda(self, rays_o, rays_d, auds, bg_coords, poses, eye=None, index=0, dt_gamma=0, bg_color=None, perturb=False, force_all_rays=False, max_steps=1024, T_thresh=1e-4, **kwargs):
        # rays_o, rays_d: [B, N, 3], assumes B == 1
        # auds: [B, 16]
        # index: [B]
        # return: image: [B, N, 3], depth: [B, N]

        prefix = rays_o.shape[:-1]
        rays_o = rays_o.contiguous().view(-1, 3)
        rays_d = rays_d.contiguous().view(-1, 3)
        bg_coords = bg_coords.contiguous().view(-1, 2)

        # only add camera offset at training!
        if self.train_camera and (self.training or self.test_train):
            dT = self.camera_dT[index] # [1, 3]
            dR = euler_angles_to_matrix(self.camera_dR[index] / 180 * np.pi + 1e-8).squeeze(0) # [1, 3] --> [3, 3]
            
            rays_o = rays_o + dT
            rays_d = rays_d @ dR

        N = rays_o.shape[0] # N = B * N, in fact
        device = rays_o.device

        results = {}

        # pre-calculate near far
        nears, fars = raymarching.near_far_from_aabb(rays_o, rays_d, self.aabb_train if self.training else self.aabb_infer, self.min_near)
        nears = nears.detach()
        fars = fars.detach()

        # encode audio
        enc_a = self.encode_audio(auds) # [1, 64]

        if enc_a is not None and self.smooth_lips:
            if self.enc_a is not None:
                _lambda = 0.35
                enc_a = _lambda * self.enc_a + (1 - _lambda) * enc_a
            self.enc_a = enc_a

        
        if self.individual_dim > 0:
            if self.training:
                ind_code = self.individual_codes[index]
            # use a fixed ind code for the unknown test data.
            else:
                ind_code = self.individual_codes[0]
        else:
            ind_code = None

        if self.training:
            # setup counter
            counter = self.step_counter[self.local_step % 16]
            counter.zero_() # set to 0
            self.local_step += 1

            xyzs, dirs, deltas, rays = raymarching.march_rays_train(rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, counter, self.mean_count, perturb, 128, force_all_rays, dt_gamma, max_steps)
            sigmas, rgbs, amb_aud, amb_eye, uncertainty = self(xyzs, dirs, enc_a, ind_code, eye)
            sigmas = self.density_scale * sigmas

            #print(f'valid RGB query ratio: {mask.sum().item() / mask.shape[0]} (total = {mask.sum().item()})')

            # weights_sum, ambient_sum, uncertainty_sum, depth, image = raymarching.composite_rays_train_uncertainty(sigmas, rgbs, ambient.abs().sum(-1), uncertainty, deltas, rays)
            weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image = raymarching.composite_rays_train_triplane(sigmas, rgbs, amb_aud.abs().sum(-1), amb_eye.abs().sum(-1), uncertainty, deltas, rays)

            # for training only
            results['weights_sum'] = weights_sum
            results['ambient_aud'] = amb_aud_sum
            results['ambient_eye'] = amb_eye_sum
            results['uncertainty'] = uncertainty_sum

            results['rays'] = xyzs, dirs, enc_a, ind_code, eye

        else:
           
            dtype = torch.float32
            
            weights_sum = torch.zeros(N, dtype=dtype, device=device)
            depth = torch.zeros(N, dtype=dtype, device=device)
            image = torch.zeros(N, 3, dtype=dtype, device=device)
            amb_aud_sum = torch.zeros(N, dtype=dtype, device=device)
            amb_eye_sum = torch.zeros(N, dtype=dtype, device=device)
            uncertainty_sum = torch.zeros(N, dtype=dtype, device=device)

            n_alive = N
            rays_alive = torch.arange(n_alive, dtype=torch.int32, device=device) # [N]
            rays_t = nears.clone() # [N]

            step = 0
            
            while step < max_steps:

                # count alive rays 
                n_alive = rays_alive.shape[0]
                
                # exit loop
                if n_alive <= 0:
                    break

                # decide compact_steps
                n_step = max(min(N // n_alive, 8), 1)

                xyzs, dirs, deltas = raymarching.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, 128, perturb if step == 0 else False, dt_gamma, max_steps)

                sigmas, rgbs, ambients_aud, ambients_eye, uncertainties = self(xyzs, dirs, enc_a, ind_code, eye)
                sigmas = self.density_scale * sigmas

                # raymarching.composite_rays_uncertainty(n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, uncertainties, weights_sum, depth, image, ambient_sum, uncertainty_sum, T_thresh)
                raymarching.composite_rays_triplane(n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients_aud, ambients_eye, uncertainties, weights_sum, depth, image, amb_aud_sum, amb_eye_sum, uncertainty_sum, T_thresh)

                rays_alive = rays_alive[rays_alive >= 0]

                # print(f'step = {step}, n_step = {n_step}, n_alive = {n_alive}, xyzs: {xyzs.shape}')

                step += n_step
            
        torso_results = self.run_torso(rays_o, bg_coords, poses, index, bg_color)
        bg_color = torso_results['bg_color']

        image = image + (1 - weights_sum).unsqueeze(-1) * bg_color
        image = image.view(*prefix, 3)
        image = image.clamp(0, 1)

        depth = torch.clamp(depth - nears, min=0) / (fars - nears)
        depth = depth.view(*prefix)

        amb_aud_sum = amb_aud_sum.view(*prefix)
        amb_eye_sum = amb_eye_sum.view(*prefix)

        results['depth'] = depth
        results['image'] = image # head_image if train, else com_image
        results['ambient_aud'] = amb_aud_sum
        results['ambient_eye'] = amb_eye_sum
        results['uncertainty'] = uncertainty_sum

        return results
    

    def run_torso(self, rays_o, bg_coords, poses, index=0, bg_color=None, **kwargs):
        # rays_o, rays_d: [B, N, 3], assumes B == 1
        # auds: [B, 16]
        # index: [B]
        # return: image: [B, N, 3], depth: [B, N]

        rays_o = rays_o.contiguous().view(-1, 3)
        bg_coords = bg_coords.contiguous().view(-1, 2)

        N = rays_o.shape[0] # N = B * N, in fact
        device = rays_o.device

        results = {}

        # background
        if bg_color is None:
            bg_color = 1

        # first mix torso with background
        if self.torso:
            # torso ind code
            if self.individual_dim_torso > 0:
                if self.training:
                    ind_code_torso = self.individual_codes_torso[index]
                # use a fixed ind code for the unknown test data.
                else:
                    ind_code_torso = self.individual_codes_torso[0]
            else:
                ind_code_torso = None
            
            # 2D density grid for acceleration...
            density_thresh_torso = min(self.density_thresh_torso, self.mean_density_torso)
            occupancy = F.grid_sample(self.density_grid_torso.view(1, 1, self.grid_size, self.grid_size), bg_coords.view(1, -1, 1, 2), align_corners=True).view(-1)
            mask = occupancy > density_thresh_torso

            # masked query of torso
            torso_alpha = torch.zeros([N, 1], device=device)
            torso_color = torch.zeros([N, 3], device=device)

            if mask.any():
                torso_alpha_mask, torso_color_mask, deform = self.forward_torso(bg_coords[mask], poses, ind_code_torso)

                torso_alpha[mask] = torso_alpha_mask.float()
                torso_color[mask] = torso_color_mask.float()

                results['deform'] = deform
            
            # first mix torso with background
            
            bg_color = torso_color * torso_alpha + bg_color * (1 - torso_alpha)

            results['torso_alpha'] = torso_alpha
            results['torso_color'] = bg_color

            # print(torso_alpha.shape, torso_alpha.max().item(), torso_alpha.min().item())
        
        results['bg_color'] = bg_color
        
        return results


    @torch.no_grad()
    def mark_untrained_grid(self, poses, intrinsic, S=64):
        # poses: [B, 4, 4]
        # intrinsic: [3, 3]

        if not self.cuda_ray:
            return
        
        if isinstance(poses, np.ndarray):
            poses = torch.from_numpy(poses)

        B = poses.shape[0]
        
        fx, fy, cx, cy = intrinsic
        
        X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
        Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
        Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)

        count = torch.zeros_like(self.density_grid)
        poses = poses.to(count.device)

        # 5-level loop, forgive me...

        for xs in X:
            for ys in Y:
                for zs in Z:
                    
                    # construct points
                    xx, yy, zz = custom_meshgrid(xs, ys, zs)
                    coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
                    indices = raymarching.morton3D(coords).long() # [N]
                    world_xyzs = (2 * coords.float() / (self.grid_size - 1) - 1).unsqueeze(0) # [1, N, 3] in [-1, 1]

                    # cascading
                    for cas in range(self.cascade):
                        bound = min(2 ** cas, self.bound)
                        half_grid_size = bound / self.grid_size
                        # scale to current cascade's resolution
                        cas_world_xyzs = world_xyzs * (bound - half_grid_size)

                        # split batch to avoid OOM
                        head = 0
                        while head < B:
                            tail = min(head + S, B)

                            # world2cam transform (poses is c2w, so we need to transpose it. Another transpose is needed for batched matmul, so the final form is without transpose.)
                            cam_xyzs = cas_world_xyzs - poses[head:tail, :3, 3].unsqueeze(1)
                            cam_xyzs = cam_xyzs @ poses[head:tail, :3, :3] # [S, N, 3]
                            
                            # query if point is covered by any camera
                            mask_z = cam_xyzs[:, :, 2] > 0 # [S, N]
                            mask_x = torch.abs(cam_xyzs[:, :, 0]) < cx / fx * cam_xyzs[:, :, 2] + half_grid_size * 2
                            mask_y = torch.abs(cam_xyzs[:, :, 1]) < cy / fy * cam_xyzs[:, :, 2] + half_grid_size * 2
                            mask = (mask_z & mask_x & mask_y).sum(0).reshape(-1) # [N]

                            # update count 
                            count[cas, indices] += mask
                            head += S
    
        # mark untrained grid as -1
        self.density_grid[count == 0] = -1

        #print(f'[mark untrained grid] {(count == 0).sum()} from {resolution ** 3 * self.cascade}')

    @torch.no_grad()
    def update_extra_state(self, decay=0.95, S=128):
        # call before each epoch to update extra states.

        if not self.cuda_ray:
            return 
        
        # use random auds (different expressions should have similar density grid...)
        rand_idx = random.randint(0, self.aud_features.shape[0] - 1)
        auds = get_audio_features(self.aud_features, self.att, rand_idx).to(self.density_bitfield.device)

        # encode audio
        enc_a = self.encode_audio(auds)

        ### update density grid
        if not self.torso: # forbid updating head if is training torso...

            tmp_grid = torch.zeros_like(self.density_grid)

            # use a random eye area based on training dataset's statistics...
            if self.exp_eye:
                eye = self.eye_area[[rand_idx]].to(self.density_bitfield.device) # [1, 1]
            else:
                eye = None
            
            # full update
            X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
            Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
            Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)

            for xs in X:
                for ys in Y:
                    for zs in Z:
                        
                        # construct points
                        xx, yy, zz = custom_meshgrid(xs, ys, zs)
                        coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
                        indices = raymarching.morton3D(coords).long() # [N]
                        xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1]

                        # cascading
                        for cas in range(self.cascade):
                            bound = min(2 ** cas, self.bound)
                            half_grid_size = bound / self.grid_size
                            # scale to current cascade's resolution
                            cas_xyzs = xyzs * (bound - half_grid_size)
                            # add noise in [-hgs, hgs]
                            cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size
                            # query density
                            sigmas = self.density(cas_xyzs, enc_a, eye)['sigma'].reshape(-1).detach().to(tmp_grid.dtype)
                            sigmas *= self.density_scale
                            # assign 
                            tmp_grid[cas, indices] = sigmas
            
            # dilate the density_grid (less aggressive culling)
            tmp_grid = raymarching.morton3D_dilation(tmp_grid)

            # ema update
            valid_mask = (self.density_grid >= 0) & (tmp_grid >= 0)
            self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask])
            self.mean_density = torch.mean(self.density_grid.clamp(min=0)).item() # -1 non-training regions are viewed as 0 density.
            self.iter_density += 1

            # convert to bitfield
            density_thresh = min(self.mean_density, self.density_thresh)
            self.density_bitfield = raymarching.packbits(self.density_grid, density_thresh, self.density_bitfield)

        ### update torso density grid
        if self.torso:
            tmp_grid_torso = torch.zeros_like(self.density_grid_torso)

            # random pose, random ind_code
            rand_idx = random.randint(0, self.poses.shape[0] - 1)
            # pose = convert_poses(self.poses[[rand_idx]]).to(self.density_bitfield.device)
            pose = self.poses[[rand_idx]].to(self.density_bitfield.device)

            if self.opt.ind_dim_torso > 0:
                ind_code = self.individual_codes_torso[[rand_idx]]
            else:
                ind_code = None

            X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
            Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)

            half_grid_size = 1 / self.grid_size

            for xs in X:
                for ys in Y:
                    xx, yy = custom_meshgrid(xs, ys)
                    coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1)], dim=-1) # [N, 2], in [0, 128)
                    indices = (coords[:, 1] * self.grid_size + coords[:, 0]).long() # NOTE: xy transposed!
                    xys = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 2] in [-1, 1]
                    xys = xys * (1 - half_grid_size)
                    # add noise in [-hgs, hgs]
                    xys += (torch.rand_like(xys) * 2 - 1) * half_grid_size
                    # query density
                    alphas, _, _ = self.forward_torso(xys, pose, ind_code) # [N, 1]
                    
                    # assign 
                    tmp_grid_torso[indices] = alphas.squeeze(1).float()

            # dilate
            tmp_grid_torso = tmp_grid_torso.view(1, 1, self.grid_size, self.grid_size)
            # tmp_grid_torso = F.max_pool2d(tmp_grid_torso, kernel_size=3, stride=1, padding=1)
            tmp_grid_torso = F.max_pool2d(tmp_grid_torso, kernel_size=5, stride=1, padding=2)
            tmp_grid_torso = tmp_grid_torso.view(-1)
            
            self.density_grid_torso = torch.maximum(self.density_grid_torso * decay, tmp_grid_torso)
            self.mean_density_torso = torch.mean(self.density_grid_torso).item()

            # density_thresh_torso = min(self.density_thresh_torso, self.mean_density_torso)
            # print(f'[density grid torso] min={self.density_grid_torso.min().item():.4f}, max={self.density_grid_torso.max().item():.4f}, mean={self.mean_density_torso:.4f}, occ_rate={(self.density_grid_torso > density_thresh_torso).sum() / (128**2):.3f}')

        ### update step counter
        total_step = min(16, self.local_step)
        if total_step > 0:
            self.mean_count = int(self.step_counter[:total_step, 0].sum().item() / total_step)
        self.local_step = 0

        #print(f'[density grid] min={self.density_grid.min().item():.4f}, max={self.density_grid.max().item():.4f}, mean={self.mean_density:.4f}, occ_rate={(self.density_grid > 0.01).sum() / (128**3 * self.cascade):.3f} | [step counter] mean={self.mean_count}')


    @torch.no_grad()
    def get_audio_grid(self,  S=128):
        # call before each epoch to update extra states.

        if not self.cuda_ray:
            return 
        
        # use random auds (different expressions should have similar density grid...)
        rand_idx = random.randint(0, self.aud_features.shape[0] - 1)
        auds = get_audio_features(self.aud_features, self.att, rand_idx).to(self.density_bitfield.device)

        # encode audio
        enc_a = self.encode_audio(auds)
        tmp_grid = torch.zeros_like(self.density_grid)

        # use a random eye area based on training dataset's statistics...
        if self.exp_eye:
            eye = self.eye_area[[rand_idx]].to(self.density_bitfield.device) # [1, 1]
        else:
            eye = None
        
        # full update
        X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
        Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
        Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)

        for xs in X:
            for ys in Y:
                for zs in Z:
                    
                    # construct points
                    xx, yy, zz = custom_meshgrid(xs, ys, zs)
                    coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
                    indices = raymarching.morton3D(coords).long() # [N]
                    xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1]

                    # cascading
                    for cas in range(self.cascade):
                        bound = min(2 ** cas, self.bound)
                        half_grid_size = bound / self.grid_size
                        # scale to current cascade's resolution
                        cas_xyzs = xyzs * (bound - half_grid_size)
                        # add noise in [-hgs, hgs]
                        cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size
                        # query density
                        aud_norms = self.density(cas_xyzs.to(tmp_grid.dtype), enc_a, eye)['ambient_aud'].reshape(-1).detach().to(tmp_grid.dtype)
                        # assign 
                        tmp_grid[cas, indices] = aud_norms
        
        # dilate the density_grid (less aggressive culling)
        tmp_grid = raymarching.morton3D_dilation(tmp_grid)
        return tmp_grid
        # # ema update
        # valid_mask = (self.density_grid >= 0) & (tmp_grid >= 0)
        # self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask])


    @torch.no_grad()
    def get_eye_grid(self,  S=128):
        # call before each epoch to update extra states.

        if not self.cuda_ray:
            return 
        
        # use random auds (different expressions should have similar density grid...)
        rand_idx = random.randint(0, self.aud_features.shape[0] - 1)
        auds = get_audio_features(self.aud_features, self.att, rand_idx).to(self.density_bitfield.device)

        # encode audio
        enc_a = self.encode_audio(auds)
        tmp_grid = torch.zeros_like(self.density_grid)

        # use a random eye area based on training dataset's statistics...
        if self.exp_eye:
            eye = self.eye_area[[rand_idx]].to(self.density_bitfield.device) # [1, 1]
        else:
            eye = None
        
        # full update
        X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
        Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
        Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)

        for xs in X:
            for ys in Y:
                for zs in Z:
                    
                    # construct points
                    xx, yy, zz = custom_meshgrid(xs, ys, zs)
                    coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
                    indices = raymarching.morton3D(coords).long() # [N]
                    xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1]

                    # cascading
                    for cas in range(self.cascade):
                        bound = min(2 ** cas, self.bound)
                        half_grid_size = bound / self.grid_size
                        # scale to current cascade's resolution
                        cas_xyzs = xyzs * (bound - half_grid_size)
                        # add noise in [-hgs, hgs]
                        cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size
                        # query density
                        eye_norms = self.density(cas_xyzs.to(tmp_grid.dtype), enc_a, eye)['ambient_eye'].reshape(-1).detach().to(tmp_grid.dtype)
                        # assign 
                        tmp_grid[cas, indices] = eye_norms
        
        # dilate the density_grid (less aggressive culling)
        tmp_grid = raymarching.morton3D_dilation(tmp_grid)
        return tmp_grid
        # # ema update
        # valid_mask = (self.density_grid >= 0) & (tmp_grid >= 0)
        # self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask])



    def render(self, rays_o, rays_d, auds, bg_coords, poses, staged=False, max_ray_batch=4096, **kwargs):
        # rays_o, rays_d: [B, N, 3], assumes B == 1
        # auds: [B, 29, 16]
        # eye: [B, 1]
        # bg_coords: [1, N, 2]
        # return: pred_rgb: [B, N, 3]

        _run = self.run_cuda
        
        B, N = rays_o.shape[:2]
        device = rays_o.device

        # never stage when cuda_ray
        if staged and not self.cuda_ray:
            # not used
            raise NotImplementedError

        else:
            results = _run(rays_o, rays_d, auds, bg_coords, poses, **kwargs)

        return results
    
    
    def render_torso(self, rays_o, rays_d, auds, bg_coords, poses, staged=False, max_ray_batch=4096, **kwargs):
        # rays_o, rays_d: [B, N, 3], assumes B == 1
        # auds: [B, 29, 16]
        # eye: [B, 1]
        # bg_coords: [1, N, 2]
        # return: pred_rgb: [B, N, 3]

        _run = self.run_torso
        
        B, N = rays_o.shape[:2]
        device = rays_o.device

        # never stage when cuda_ray
        if staged and not self.cuda_ray:
            # not used
            raise NotImplementedError

        else:
            results = _run(rays_o, bg_coords, poses, **kwargs)

        return results