Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import glob | |
import json | |
import tqdm | |
import numpy as np | |
from scipy.spatial.transform import Slerp, Rotation | |
import matplotlib.pyplot as plt | |
import trimesh | |
import torch | |
import torch.nn.functional as F | |
from torch.utils.data import DataLoader | |
from .utils import get_audio_features, get_rays, get_bg_coords, convert_poses, AudDataset | |
# ref: https://github.com/NVlabs/instant-ngp/blob/b76004c8cf478880227401ae763be4c02f80b62f/include/neural-graphics-primitives/nerf_loader.h#L50 | |
def nerf_matrix_to_ngp(pose, scale=0.33, offset=[0, 0, 0]): | |
new_pose = np.array([ | |
[pose[1, 0], -pose[1, 1], -pose[1, 2], pose[1, 3] * scale + offset[0]], | |
[pose[2, 0], -pose[2, 1], -pose[2, 2], pose[2, 3] * scale + offset[1]], | |
[pose[0, 0], -pose[0, 1], -pose[0, 2], pose[0, 3] * scale + offset[2]], | |
[0, 0, 0, 1], | |
], dtype=np.float32) | |
return new_pose | |
def smooth_camera_path(poses, kernel_size=5): | |
# smooth the camera trajectory... | |
# poses: [N, 4, 4], numpy array | |
N = poses.shape[0] | |
K = kernel_size // 2 | |
trans = poses[:, :3, 3].copy() # [N, 3] | |
rots = poses[:, :3, :3].copy() # [N, 3, 3] | |
for i in range(N): | |
start = max(0, i - K) | |
end = min(N, i + K + 1) | |
poses[i, :3, 3] = trans[start:end].mean(0) | |
poses[i, :3, :3] = Rotation.from_matrix(rots[start:end]).mean().as_matrix() | |
return poses | |
def polygon_area(x, y): | |
x_ = x - x.mean() | |
y_ = y - y.mean() | |
correction = x_[-1] * y_[0] - y_[-1]* x_[0] | |
main_area = np.dot(x_[:-1], y_[1:]) - np.dot(y_[:-1], x_[1:]) | |
return 0.5 * np.abs(main_area + correction) | |
def visualize_poses(poses, size=0.1): | |
# poses: [B, 4, 4] | |
print(f'[INFO] visualize poses: {poses.shape}') | |
axes = trimesh.creation.axis(axis_length=4) | |
box = trimesh.primitives.Box(extents=(2, 2, 2)).as_outline() | |
box.colors = np.array([[128, 128, 128]] * len(box.entities)) | |
objects = [axes, box] | |
for pose in poses: | |
# a camera is visualized with 8 line segments. | |
pos = pose[:3, 3] | |
a = pos + size * pose[:3, 0] + size * pose[:3, 1] + size * pose[:3, 2] | |
b = pos - size * pose[:3, 0] + size * pose[:3, 1] + size * pose[:3, 2] | |
c = pos - size * pose[:3, 0] - size * pose[:3, 1] + size * pose[:3, 2] | |
d = pos + size * pose[:3, 0] - size * pose[:3, 1] + size * pose[:3, 2] | |
dir = (a + b + c + d) / 4 - pos | |
dir = dir / (np.linalg.norm(dir) + 1e-8) | |
o = pos + dir * 3 | |
segs = np.array([[pos, a], [pos, b], [pos, c], [pos, d], [a, b], [b, c], [c, d], [d, a], [pos, o]]) | |
segs = trimesh.load_path(segs) | |
objects.append(segs) | |
trimesh.Scene(objects).show() | |
from .wav2vec import * | |
class NeRFDataset_Test: | |
def __init__(self, opt, device, downscale=1): | |
super().__init__() | |
self.opt = opt | |
self.device = device | |
self.downscale = downscale | |
self.scale = opt.scale # camera radius scale to make sure camera are inside the bounding box. | |
self.offset = opt.offset # camera offset | |
self.bound = opt.bound # bounding box half length, also used as the radius to random sample poses. | |
self.fp16 = opt.fp16 | |
self.start_index = opt.data_range[0] | |
self.end_index = opt.data_range[1] | |
self.training = False | |
self.num_rays = -1 | |
# load nerf-compatible format data. | |
with open(opt.pose, 'r') as f: | |
transform = json.load(f) | |
# load image size | |
self.H = int(transform['cy']) * 2 // downscale | |
self.W = int(transform['cx']) * 2 // downscale | |
# read images | |
frames = transform["frames"] | |
# use a slice of the dataset | |
if self.end_index == -1: # abuse... | |
self.end_index = len(frames) | |
frames = frames[self.start_index:self.end_index] | |
print(f'[INFO] load {len(frames)} frames.') | |
# only load pre-calculated aud features when not live-streaming | |
if not self.opt.asr: | |
if self.opt.aud.endswith('npy'): | |
aud_features = np.load(self.opt.aud) | |
elif self.opt.aud.endswith('wav'): | |
if self.opt.asr_model == 'cpierse/wav2vec2-large-xlsr-53-esperanto': | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--wav', type=str, default='') | |
parser.add_argument('--play', action='store_true', help="play out the audio") | |
parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto') | |
# parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self') | |
parser.add_argument('--save_feats', action='store_true') | |
# audio FPS | |
parser.add_argument('--fps', type=int, default=50) | |
# sliding window left-middle-right length. | |
parser.add_argument('-l', type=int, default=10) | |
parser.add_argument('-m', type=int, default=50) | |
parser.add_argument('-r', type=int, default=10) | |
opt = parser.parse_args() | |
# fix | |
opt.asr_wav = self.opt.aud | |
opt.asr_play = opt.play | |
opt.asr_save_feats = True | |
opt.asr_model = opt.model | |
# 利用预训练的Wav2vec来跑一下 | |
with ASR(opt) as asr: | |
asr.run() | |
# os.system(f"ls") | |
# os.system(f"python NeRF/nerf_triplane/wav2vec.py --wav {self.opt.aud} --save_feats") | |
aud_features = np.load(opt.aud.replace('.wav', '_eo.npy')) | |
elif self.opt.asr_model == 'deepspeech': | |
os.system(f"python NeRF/data_utils/deepspeech_features/extract_ds_features.py --input {self.opt.aud}") | |
aud_features = np.load(opt.aud.replace('.wav', '.npy')) | |
elif self.opt.asr_model == 'ave': | |
from .network import AudioEncoder | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = AudioEncoder().to(device).eval() | |
ckpt = torch.load('./checkpoints/audio_visual_encoder.pth') | |
model.load_state_dict({f'audio_encoder.{k}': v for k, v in ckpt.items()}) | |
dataset = AudDataset(self.opt.aud) | |
data_loader = DataLoader(dataset, batch_size=64, shuffle=False) | |
outputs = [] | |
for mel in data_loader: | |
mel = mel.to(device) | |
with torch.no_grad(): | |
out = model(mel) | |
outputs.append(out) | |
outputs = torch.cat(outputs, dim=0).cpu() | |
first_frame, last_frame = outputs[:1], outputs[-1:] | |
aud_features = torch.cat([first_frame.repeat(2, 1), outputs, last_frame.repeat(2, 1)], dim=0).numpy() | |
else: | |
try: | |
aud_features = np.load(self.opt.aud) | |
except: | |
print(f'[ERROR] If do not use Audio Visual Encoder, replace it with the npy file path') | |
else: | |
raise NotImplementedError | |
if self.opt.asr_model == 'ave': | |
aud_features = torch.from_numpy(aud_features).unsqueeze(0) | |
# support both [N, 16] labels and [N, 16, K] logits | |
if len(aud_features.shape) == 3: | |
aud_features = aud_features.float().permute(1, 0, 2) # [N, 16, 29] --> [N, 29, 16] | |
if self.opt.emb: | |
print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode') | |
aud_features = aud_features.argmax(1) # [N, 16] | |
else: | |
assert self.opt.emb, "aud only provide labels, must use --emb" | |
aud_features = aud_features.long() | |
print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}') | |
else: | |
aud_features = torch.from_numpy(aud_features) | |
# support both [N, 16] labels and [N, 16, K] logits | |
if len(aud_features.shape) == 3: | |
aud_features = aud_features.float().permute(0, 2, 1) # [N, 16, 29] --> [N, 29, 16] | |
if self.opt.emb: | |
print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode') | |
aud_features = aud_features.argmax(1) # [N, 16] | |
else: | |
assert self.opt.emb, "aud only provide labels, must use --emb" | |
aud_features = aud_features.long() | |
print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}') | |
self.poses = [] | |
self.auds = [] | |
self.eye_area = [] | |
for f in tqdm.tqdm(frames, desc=f'Loading data'): | |
pose = np.array(f['transform_matrix'], dtype=np.float32) # [4, 4] | |
pose = nerf_matrix_to_ngp(pose, scale=self.scale, offset=self.offset) | |
self.poses.append(pose) | |
# find the corresponding audio to the image frame | |
if not self.opt.asr and self.opt.aud == '': | |
aud = aud_features[min(f['aud_id'], aud_features.shape[0] - 1)] # careful for the last frame... | |
self.auds.append(aud) | |
if self.opt.exp_eye: | |
if 'eye_ratio' in f: | |
area = f['eye_ratio'] | |
else: | |
area = 0.25 # default value for opened eye | |
self.eye_area.append(area) | |
# load pre-extracted background image (should be the same size as training image...) | |
if self.opt.bg_img == 'white': # special | |
bg_img = np.ones((self.H, self.W, 3), dtype=np.float32) | |
elif self.opt.bg_img == 'black': # special | |
bg_img = np.zeros((self.H, self.W, 3), dtype=np.float32) | |
else: # load from file | |
bg_img = cv2.imread(self.opt.bg_img, cv2.IMREAD_UNCHANGED) # [H, W, 3] | |
if bg_img.shape[0] != self.H or bg_img.shape[1] != self.W: | |
bg_img = cv2.resize(bg_img, (self.W, self.H), interpolation=cv2.INTER_AREA) | |
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB) | |
bg_img = bg_img.astype(np.float32) / 255 # [H, W, 3/4] | |
self.bg_img = bg_img | |
self.poses = np.stack(self.poses, axis=0) | |
# smooth camera path... | |
if self.opt.smooth_path: | |
self.poses = smooth_camera_path(self.poses, self.opt.smooth_path_window) | |
self.poses = torch.from_numpy(self.poses) # [N, 4, 4] | |
if self.opt.asr: | |
# live streaming, no pre-calculated auds | |
self.auds = None | |
else: | |
# auds corresponding to images | |
if self.opt.aud == '': | |
self.auds = torch.stack(self.auds, dim=0) # [N, 32, 16] | |
# auds is novel, may have a different length with images | |
else: | |
self.auds = aud_features | |
self.bg_img = torch.from_numpy(self.bg_img) | |
if self.opt.exp_eye: | |
self.eye_area = np.array(self.eye_area, dtype=np.float32) # [N] | |
print(f'[INFO] eye_area: {self.eye_area.min()} - {self.eye_area.max()}') | |
if self.opt.smooth_eye: | |
# naive 5 window average | |
ori_eye = self.eye_area.copy() | |
for i in range(ori_eye.shape[0]): | |
start = max(0, i - 1) | |
end = min(ori_eye.shape[0], i + 2) | |
self.eye_area[i] = ori_eye[start:end].mean() | |
self.eye_area = torch.from_numpy(self.eye_area).view(-1, 1) # [N, 1] | |
# always preload | |
self.poses = self.poses.to(self.device) | |
if self.auds is not None: | |
self.auds = self.auds.to(self.device) | |
self.bg_img = self.bg_img.to(torch.half).to(self.device) | |
if self.opt.exp_eye: | |
self.eye_area = self.eye_area.to(self.device) | |
# load intrinsics | |
fl_x = fl_y = transform['focal_len'] | |
cx = (transform['cx'] / downscale) | |
cy = (transform['cy'] / downscale) | |
self.intrinsics = np.array([fl_x, fl_y, cx, cy]) | |
# directly build the coordinate meshgrid in [-1, 1]^2 | |
self.bg_coords = get_bg_coords(self.H, self.W, self.device) # [1, H*W, 2] in [-1, 1] | |
def mirror_index(self, index): | |
size = self.poses.shape[0] | |
turn = index // size | |
res = index % size | |
if turn % 2 == 0: | |
return res | |
else: | |
return size - res - 1 | |
def collate(self, index): | |
B = len(index) # a list of length 1 | |
# assert B == 1 | |
results = {} | |
# audio use the original index | |
if self.auds is not None: | |
auds = get_audio_features(self.auds, self.opt.att, index[0]).to(self.device) | |
results['auds'] = auds | |
# head pose and bg image may mirror (replay --> <-- --> <--). | |
index[0] = self.mirror_index(index[0]) | |
poses = self.poses[index].to(self.device) # [B, 4, 4] | |
rays = get_rays(poses, self.intrinsics, self.H, self.W, self.num_rays, self.opt.patch_size) | |
results['index'] = index # for ind. code | |
results['H'] = self.H | |
results['W'] = self.W | |
results['rays_o'] = rays['rays_o'] | |
results['rays_d'] = rays['rays_d'] | |
if self.opt.exp_eye: | |
results['eye'] = self.eye_area[index].to(self.device) # [1] | |
else: | |
results['eye'] = None | |
bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device) | |
results['bg_color'] = bg_img | |
bg_coords = self.bg_coords # [1, N, 2] | |
results['bg_coords'] = bg_coords | |
# results['poses'] = convert_poses(poses) # [B, 6] | |
# results['poses_matrix'] = poses # [B, 4, 4] | |
results['poses'] = poses # [B, 4, 4] | |
return results | |
def dataloader(self): | |
# test with novel auds, then use its length | |
if self.auds is not None: | |
size = self.auds.shape[0] | |
# live stream test, use 2 * len(poses), so it naturally mirrors. | |
else: | |
size = 2 * self.poses.shape[0] | |
loader = DataLoader(list(range(size)), batch_size=1, collate_fn=self.collate, shuffle=False, num_workers=0) | |
loader._data = self # an ugly fix... we need poses in trainer. | |
# do evaluate if has gt images and use self-driven setting | |
loader.has_gt = False | |
return loader | |
class NeRFDataset: | |
def __init__(self, opt, device, type='train', downscale=1): | |
super().__init__() | |
self.opt = opt | |
self.device = device | |
self.type = type # train, val, test | |
self.downscale = downscale | |
self.root_path = opt.path | |
self.preload = opt.preload # 0 = disk, 1 = cpu, 2 = gpu | |
self.scale = opt.scale # camera radius scale to make sure camera are inside the bounding box. | |
self.offset = opt.offset # camera offset | |
self.bound = opt.bound # bounding box half length, also used as the radius to random sample poses. | |
self.fp16 = opt.fp16 | |
self.start_index = opt.data_range[0] | |
self.end_index = opt.data_range[1] | |
self.training = self.type in ['train', 'all', 'trainval'] | |
self.num_rays = self.opt.num_rays if self.training else -1 | |
# load nerf-compatible format data. | |
# load all splits (train/valid/test) | |
if type == 'all': | |
transform_paths = glob.glob(os.path.join(self.root_path, '*.json')) | |
transform = None | |
for transform_path in transform_paths: | |
with open(transform_path, 'r') as f: | |
tmp_transform = json.load(f) | |
if transform is None: | |
transform = tmp_transform | |
else: | |
transform['frames'].extend(tmp_transform['frames']) | |
# load train and val split | |
elif type == 'trainval': | |
with open(os.path.join(self.root_path, f'transforms_train.json'), 'r') as f: | |
transform = json.load(f) | |
with open(os.path.join(self.root_path, f'transforms_val.json'), 'r') as f: | |
transform_val = json.load(f) | |
transform['frames'].extend(transform_val['frames']) | |
# only load one specified split | |
else: | |
# no test, use val as test | |
_split = 'val' if type == 'test' else type | |
with open(os.path.join(self.root_path, f'transforms_{_split}.json'), 'r') as f: | |
transform = json.load(f) | |
# load image size | |
if 'h' in transform and 'w' in transform: | |
self.H = int(transform['h']) // downscale | |
self.W = int(transform['w']) // downscale | |
else: | |
self.H = int(transform['cy']) * 2 // downscale | |
self.W = int(transform['cx']) * 2 // downscale | |
# read images | |
frames = transform["frames"] | |
# use a slice of the dataset | |
if self.end_index == -1: # abuse... | |
self.end_index = len(frames) | |
frames = frames[self.start_index:self.end_index] | |
# use a subset of dataset. | |
if type == 'train': | |
if self.opt.part: | |
frames = frames[::10] # 1/10 frames | |
elif self.opt.part2: | |
frames = frames[:375] # first 15s | |
elif type == 'val': | |
frames = frames[:100] # first 100 frames for val | |
print(f'[INFO] load {len(frames)} {type} frames.') | |
# only load pre-calculated aud features when not live-streaming | |
if not self.opt.asr: | |
# empty means the default self-driven extracted features. | |
if self.opt.aud == '': | |
if 'esperanto' in self.opt.asr_model: | |
aud_features = np.load(os.path.join(self.root_path, 'aud_eo.npy')) | |
elif 'deepspeech' in self.opt.asr_model: | |
aud_features = np.load(os.path.join(self.root_path, 'aud_ds.npy')) | |
# elif 'hubert_cn' in self.opt.asr_model: | |
# aud_features = np.load(os.path.join(self.root_path, 'aud_hu_cn.npy')) | |
elif 'hubert' in self.opt.asr_model: | |
aud_features = np.load(os.path.join(self.root_path, 'aud_hu.npy')) | |
else: | |
aud_features = np.load(os.path.join(self.root_path, 'aud.npy')) | |
# cross-driven extracted features. | |
else: | |
aud_features = np.load(self.opt.aud) | |
aud_features = torch.from_numpy(aud_features) | |
# support both [N, 16] labels and [N, 16, K] logits | |
if len(aud_features.shape) == 3: | |
aud_features = aud_features.float().permute(0, 2, 1) # [N, 16, 29] --> [N, 29, 16] | |
if self.opt.emb: | |
print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode') | |
aud_features = aud_features.argmax(1) # [N, 16] | |
else: | |
assert self.opt.emb, "aud only provide labels, must use --emb" | |
aud_features = aud_features.long() | |
print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}') | |
# load action units | |
import pandas as pd | |
au_blink_info=pd.read_csv(os.path.join(self.root_path, 'au.csv')) | |
au_blink = au_blink_info[' AU45_r'].values | |
self.torso_img = [] | |
self.images = [] | |
self.poses = [] | |
self.exps = [] | |
self.auds = [] | |
self.face_rect = [] | |
self.lhalf_rect = [] | |
self.lips_rect = [] | |
self.eye_area = [] | |
self.eye_rect = [] | |
for f in tqdm.tqdm(frames, desc=f'Loading {type} data'): | |
f_path = os.path.join(self.root_path, 'gt_imgs', str(f['img_id']) + '.jpg') | |
if not os.path.exists(f_path): | |
print('[WARN]', f_path, 'NOT FOUND!') | |
continue | |
pose = np.array(f['transform_matrix'], dtype=np.float32) # [4, 4] | |
pose = nerf_matrix_to_ngp(pose, scale=self.scale, offset=self.offset) | |
self.poses.append(pose) | |
if self.preload > 0: | |
image = cv2.imread(f_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] o [H, W, 4] | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
image = image.astype(np.float32) / 255 # [H, W, 3/4] | |
self.images.append(image) | |
else: | |
self.images.append(f_path) | |
# load frame-wise bg | |
torso_img_path = os.path.join(self.root_path, 'torso_imgs', str(f['img_id']) + '.png') | |
if self.preload > 0: | |
torso_img = cv2.imread(torso_img_path, cv2.IMREAD_UNCHANGED) # [H, W, 4] | |
torso_img = cv2.cvtColor(torso_img, cv2.COLOR_BGRA2RGBA) | |
torso_img = torso_img.astype(np.float32) / 255 # [H, W, 3/4] | |
self.torso_img.append(torso_img) | |
else: | |
self.torso_img.append(torso_img_path) | |
# find the corresponding audio to the image frame | |
if not self.opt.asr and self.opt.aud == '': | |
aud = aud_features[min(f['aud_id'], aud_features.shape[0] - 1)] # careful for the last frame... | |
self.auds.append(aud) | |
# load lms and extract face | |
lms = np.loadtxt(os.path.join(self.root_path, 'ori_imgs', str(f['img_id']) + '.lms')) # [68, 2] | |
lh_xmin, lh_xmax = int(lms[31:36, 1].min()), int(lms[:, 1].max()) # actually lower half area | |
xmin, xmax = int(lms[:, 1].min()), int(lms[:, 1].max()) | |
ymin, ymax = int(lms[:, 0].min()), int(lms[:, 0].max()) | |
self.face_rect.append([xmin, xmax, ymin, ymax]) | |
self.lhalf_rect.append([lh_xmin, lh_xmax, ymin, ymax]) | |
if self.opt.exp_eye: | |
# eyes_left = slice(36, 42) | |
# eyes_right = slice(42, 48) | |
# area_left = polygon_area(lms[eyes_left, 0], lms[eyes_left, 1]) | |
# area_right = polygon_area(lms[eyes_right, 0], lms[eyes_right, 1]) | |
# # area percentage of two eyes of the whole image... | |
# area = (area_left + area_right) / (self.H * self.W) * 100 | |
# action units blink AU45 | |
area = au_blink[f['img_id']] | |
area = np.clip(area, 0, 2) / 2 | |
# area = area + np.random.rand() / 10 | |
self.eye_area.append(area) | |
xmin, xmax = int(lms[36:48, 1].min()), int(lms[36:48, 1].max()) | |
ymin, ymax = int(lms[36:48, 0].min()), int(lms[36:48, 0].max()) | |
self.eye_rect.append([xmin, xmax, ymin, ymax]) | |
if self.opt.finetune_lips: | |
lips = slice(48, 60) | |
xmin, xmax = int(lms[lips, 1].min()), int(lms[lips, 1].max()) | |
ymin, ymax = int(lms[lips, 0].min()), int(lms[lips, 0].max()) | |
# padding to H == W | |
cx = (xmin + xmax) // 2 | |
cy = (ymin + ymax) // 2 | |
l = max(xmax - xmin, ymax - ymin) // 2 | |
xmin = max(0, cx - l) | |
xmax = min(self.H, cx + l) | |
ymin = max(0, cy - l) | |
ymax = min(self.W, cy + l) | |
self.lips_rect.append([xmin, xmax, ymin, ymax]) | |
# load pre-extracted background image (should be the same size as training image...) | |
if self.opt.bg_img == 'white': # special | |
bg_img = np.ones((self.H, self.W, 3), dtype=np.float32) | |
elif self.opt.bg_img == 'black': # special | |
bg_img = np.zeros((self.H, self.W, 3), dtype=np.float32) | |
else: # load from file | |
# default bg | |
if self.opt.bg_img == '': | |
self.opt.bg_img = os.path.join(self.root_path, 'bc.jpg') | |
bg_img = cv2.imread(self.opt.bg_img, cv2.IMREAD_UNCHANGED) # [H, W, 3] | |
if bg_img.shape[0] != self.H or bg_img.shape[1] != self.W: | |
bg_img = cv2.resize(bg_img, (self.W, self.H), interpolation=cv2.INTER_AREA) | |
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB) | |
bg_img = bg_img.astype(np.float32) / 255 # [H, W, 3/4] | |
self.bg_img = bg_img | |
self.poses = np.stack(self.poses, axis=0) | |
# smooth camera path... | |
if self.opt.smooth_path: | |
self.poses = smooth_camera_path(self.poses, self.opt.smooth_path_window) | |
self.poses = torch.from_numpy(self.poses) # [N, 4, 4] | |
if self.preload > 0: | |
self.images = torch.from_numpy(np.stack(self.images, axis=0)) # [N, H, W, C] | |
self.torso_img = torch.from_numpy(np.stack(self.torso_img, axis=0)) # [N, H, W, C] | |
else: | |
self.images = np.array(self.images) | |
self.torso_img = np.array(self.torso_img) | |
if self.opt.asr: | |
# live streaming, no pre-calculated auds | |
self.auds = None | |
else: | |
# auds corresponding to images | |
if self.opt.aud == '': | |
self.auds = torch.stack(self.auds, dim=0) # [N, 32, 16] | |
# auds is novel, may have a different length with images | |
else: | |
self.auds = aud_features | |
self.bg_img = torch.from_numpy(self.bg_img) | |
if self.opt.exp_eye: | |
self.eye_area = np.array(self.eye_area, dtype=np.float32) # [N] | |
print(f'[INFO] eye_area: {self.eye_area.min()} - {self.eye_area.max()}') | |
if self.opt.smooth_eye: | |
# naive 5 window average | |
ori_eye = self.eye_area.copy() | |
for i in range(ori_eye.shape[0]): | |
start = max(0, i - 1) | |
end = min(ori_eye.shape[0], i + 2) | |
self.eye_area[i] = ori_eye[start:end].mean() | |
self.eye_area = torch.from_numpy(self.eye_area).view(-1, 1) # [N, 1] | |
# calculate mean radius of all camera poses | |
self.radius = self.poses[:, :3, 3].norm(dim=-1).mean(0).item() | |
#print(f'[INFO] dataset camera poses: radius = {self.radius:.4f}, bound = {self.bound}') | |
# [debug] uncomment to view all training poses. | |
# visualize_poses(self.poses.numpy()) | |
# [debug] uncomment to view examples of randomly generated poses. | |
# visualize_poses(rand_poses(100, self.device, radius=self.radius).cpu().numpy()) | |
if self.preload > 1: | |
self.poses = self.poses.to(self.device) | |
if self.auds is not None: | |
self.auds = self.auds.to(self.device) | |
self.bg_img = self.bg_img.to(torch.half).to(self.device) | |
self.torso_img = self.torso_img.to(torch.half).to(self.device) | |
self.images = self.images.to(torch.half).to(self.device) | |
if self.opt.exp_eye: | |
self.eye_area = self.eye_area.to(self.device) | |
# load intrinsics | |
if 'focal_len' in transform: | |
fl_x = fl_y = transform['focal_len'] | |
elif 'fl_x' in transform or 'fl_y' in transform: | |
fl_x = (transform['fl_x'] if 'fl_x' in transform else transform['fl_y']) / downscale | |
fl_y = (transform['fl_y'] if 'fl_y' in transform else transform['fl_x']) / downscale | |
elif 'camera_angle_x' in transform or 'camera_angle_y' in transform: | |
# blender, assert in radians. already downscaled since we use H/W | |
fl_x = self.W / (2 * np.tan(transform['camera_angle_x'] / 2)) if 'camera_angle_x' in transform else None | |
fl_y = self.H / (2 * np.tan(transform['camera_angle_y'] / 2)) if 'camera_angle_y' in transform else None | |
if fl_x is None: fl_x = fl_y | |
if fl_y is None: fl_y = fl_x | |
else: | |
raise RuntimeError('Failed to load focal length, please check the transforms.json!') | |
cx = (transform['cx'] / downscale) if 'cx' in transform else (self.W / 2) | |
cy = (transform['cy'] / downscale) if 'cy' in transform else (self.H / 2) | |
self.intrinsics = np.array([fl_x, fl_y, cx, cy]) | |
# directly build the coordinate meshgrid in [-1, 1]^2 | |
self.bg_coords = get_bg_coords(self.H, self.W, self.device) # [1, H*W, 2] in [-1, 1] | |
def mirror_index(self, index): | |
size = self.poses.shape[0] | |
turn = index // size | |
res = index % size | |
if turn % 2 == 0: | |
return res | |
else: | |
return size - res - 1 | |
def collate(self, index): | |
B = len(index) # a list of length 1 | |
# assert B == 1 | |
results = {} | |
# audio use the original index | |
if self.auds is not None: | |
auds = get_audio_features(self.auds, self.opt.att, index[0]).to(self.device) | |
results['auds'] = auds | |
# head pose and bg image may mirror (replay --> <-- --> <--). | |
index[0] = self.mirror_index(index[0]) | |
poses = self.poses[index].to(self.device) # [B, 4, 4] | |
if self.training and self.opt.finetune_lips: | |
rect = self.lips_rect[index[0]] | |
results['rect'] = rect | |
rays = get_rays(poses, self.intrinsics, self.H, self.W, -1, rect=rect) | |
else: | |
rays = get_rays(poses, self.intrinsics, self.H, self.W, self.num_rays, self.opt.patch_size) | |
results['index'] = index # for ind. code | |
results['H'] = self.H | |
results['W'] = self.W | |
results['rays_o'] = rays['rays_o'] | |
results['rays_d'] = rays['rays_d'] | |
# get a mask for rays inside rect_face | |
if self.training: | |
xmin, xmax, ymin, ymax = self.face_rect[index[0]] | |
face_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N] | |
results['face_mask'] = face_mask | |
xmin, xmax, ymin, ymax = self.lhalf_rect[index[0]] | |
lhalf_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N] | |
results['lhalf_mask'] = lhalf_mask | |
if self.opt.exp_eye: | |
results['eye'] = self.eye_area[index].to(self.device) # [1] | |
if self.training: | |
results['eye'] += (np.random.rand()-0.5) / 10 | |
xmin, xmax, ymin, ymax = self.eye_rect[index[0]] | |
eye_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N] | |
results['eye_mask'] = eye_mask | |
else: | |
results['eye'] = None | |
# load bg | |
bg_torso_img = self.torso_img[index] | |
if self.preload == 0: # on the fly loading | |
bg_torso_img = cv2.imread(bg_torso_img[0], cv2.IMREAD_UNCHANGED) # [H, W, 4] | |
bg_torso_img = cv2.cvtColor(bg_torso_img, cv2.COLOR_BGRA2RGBA) | |
bg_torso_img = bg_torso_img.astype(np.float32) / 255 # [H, W, 3/4] | |
bg_torso_img = torch.from_numpy(bg_torso_img).unsqueeze(0) | |
bg_torso_img = bg_torso_img[..., :3] * bg_torso_img[..., 3:] + self.bg_img * (1 - bg_torso_img[..., 3:]) | |
bg_torso_img = bg_torso_img.view(B, -1, 3).to(self.device) | |
if not self.opt.torso: | |
bg_img = bg_torso_img | |
else: | |
bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device) | |
if self.training: | |
bg_img = torch.gather(bg_img, 1, torch.stack(3 * [rays['inds']], -1)) # [B, N, 3] | |
results['bg_color'] = bg_img | |
if self.opt.torso and self.training: | |
bg_torso_img = torch.gather(bg_torso_img, 1, torch.stack(3 * [rays['inds']], -1)) # [B, N, 3] | |
results['bg_torso_color'] = bg_torso_img | |
images = self.images[index] # [B, H, W, 3/4] | |
if self.preload == 0: | |
images = cv2.imread(images[0], cv2.IMREAD_UNCHANGED) # [H, W, 3] | |
images = cv2.cvtColor(images, cv2.COLOR_BGR2RGB) | |
images = images.astype(np.float32) / 255 # [H, W, 3] | |
images = torch.from_numpy(images).unsqueeze(0) | |
images = images.to(self.device) | |
if self.training: | |
C = images.shape[-1] | |
images = torch.gather(images.view(B, -1, C), 1, torch.stack(C * [rays['inds']], -1)) # [B, N, 3/4] | |
results['images'] = images | |
if self.training: | |
bg_coords = torch.gather(self.bg_coords, 1, torch.stack(2 * [rays['inds']], -1)) # [1, N, 2] | |
else: | |
bg_coords = self.bg_coords # [1, N, 2] | |
results['bg_coords'] = bg_coords | |
# results['poses'] = convert_poses(poses) # [B, 6] | |
# results['poses_matrix'] = poses # [B, 4, 4] | |
results['poses'] = poses # [B, 4, 4] | |
return results | |
def dataloader(self): | |
if self.training: | |
# training len(poses) == len(auds) | |
size = self.poses.shape[0] | |
else: | |
# test with novel auds, then use its length | |
if self.auds is not None: | |
size = self.auds.shape[0] | |
# live stream test, use 2 * len(poses), so it naturally mirrors. | |
else: | |
size = 2 * self.poses.shape[0] | |
loader = DataLoader(list(range(size)), batch_size=1, collate_fn=self.collate, shuffle=self.training, num_workers=0) | |
loader._data = self # an ugly fix... we need poses in trainer. | |
# do evaluate if has gt images and use self-driven setting | |
loader.has_gt = (self.opt.aud == '') | |
return loader |