File size: 62,462 Bytes
8d0209c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
import os
import glob
import tqdm
import random
import tensorboardX
import librosa
import librosa.filters
from scipy import signal
from os.path import basename
import numpy as np
import time
import cv2
import matplotlib.pyplot as plt

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F

import trimesh
import mcubes
from rich.console import Console
from torch_ema import ExponentialMovingAverage

from packaging import version as pver
import imageio
import lpips

def custom_meshgrid(*args):
    # ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
    if pver.parse(torch.__version__) < pver.parse('1.10'):
        return torch.meshgrid(*args)
    else:
        return torch.meshgrid(*args, indexing='ij')


def get_audio_features(features, att_mode, index):
    if att_mode == 0:
        return features[[index]]
    elif att_mode == 1:
        left = index - 8
        pad_left = 0
        if left < 0:
            pad_left = -left
            left = 0
        auds = features[left:index]
        if pad_left > 0:
            # pad may be longer than auds, so do not use zeros_like
            auds = torch.cat([torch.zeros(pad_left, *auds.shape[1:], device=auds.device, dtype=auds.dtype), auds], dim=0)
        return auds
    elif att_mode == 2:
        left = index - 4
        right = index + 4
        pad_left = 0
        pad_right = 0
        if left < 0:
            pad_left = -left
            left = 0
        if right > features.shape[0]:
            pad_right = right - features.shape[0]
            right = features.shape[0]
        auds = features[left:right]
        if pad_left > 0:
            auds = torch.cat([torch.zeros_like(auds[:pad_left]), auds], dim=0)
        if pad_right > 0:
            auds = torch.cat([auds, torch.zeros_like(auds[:pad_right])], dim=0) # [8, 16]
        return auds
    else:
        raise NotImplementedError(f'wrong att_mode: {att_mode}')


@torch.jit.script
def linear_to_srgb(x):
    return torch.where(x < 0.0031308, 12.92 * x, 1.055 * x ** 0.41666 - 0.055)


@torch.jit.script
def srgb_to_linear(x):
    return torch.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)

# copied from pytorch3d
def _angle_from_tan(

    axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool

) -> torch.Tensor:
    """

    Extract the first or third Euler angle from the two members of

    the matrix which are positive constant times its sine and cosine.



    Args:

        axis: Axis label "X" or "Y or "Z" for the angle we are finding.

        other_axis: Axis label "X" or "Y or "Z" for the middle axis in the

            convention.

        data: Rotation matrices as tensor of shape (..., 3, 3).

        horizontal: Whether we are looking for the angle for the third axis,

            which means the relevant entries are in the same row of the

            rotation matrix. If not, they are in the same column.

        tait_bryan: Whether the first and third axes in the convention differ.



    Returns:

        Euler Angles in radians for each matrix in data as a tensor

        of shape (...).

    """

    i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
    if horizontal:
        i2, i1 = i1, i2
    even = (axis + other_axis) in ["XY", "YZ", "ZX"]
    if horizontal == even:
        return torch.atan2(data[..., i1], data[..., i2])
    if tait_bryan:
        return torch.atan2(-data[..., i2], data[..., i1])
    return torch.atan2(data[..., i2], -data[..., i1])


def _index_from_letter(letter: str) -> int:
    if letter == "X":
        return 0
    if letter == "Y":
        return 1
    if letter == "Z":
        return 2
    raise ValueError("letter must be either X, Y or Z.")


def matrix_to_euler_angles(matrix: torch.Tensor, convention: str = 'XYZ') -> torch.Tensor:
    """

    Convert rotations given as rotation matrices to Euler angles in radians.



    Args:

        matrix: Rotation matrices as tensor of shape (..., 3, 3).

        convention: Convention string of three uppercase letters.



    Returns:

        Euler angles in radians as tensor of shape (..., 3).

    """
    # if len(convention) != 3:
    #     raise ValueError("Convention must have 3 letters.")
    # if convention[1] in (convention[0], convention[2]):
    #     raise ValueError(f"Invalid convention {convention}.")
    # for letter in convention:
    #     if letter not in ("X", "Y", "Z"):
    #         raise ValueError(f"Invalid letter {letter} in convention string.")
    # if matrix.size(-1) != 3 or matrix.size(-2) != 3:
    #     raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
    i0 = _index_from_letter(convention[0])
    i2 = _index_from_letter(convention[2])
    tait_bryan = i0 != i2
    if tait_bryan:
        central_angle = torch.asin(
            matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
        )
    else:
        central_angle = torch.acos(matrix[..., i0, i0])

    o = (
        _angle_from_tan(
            convention[0], convention[1], matrix[..., i2], False, tait_bryan
        ),
        central_angle,
        _angle_from_tan(
            convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
        ),
    )
    return torch.stack(o, -1)

@torch.cuda.amp.autocast(enabled=False)
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
    """

    Return the rotation matrices for one of the rotations about an axis

    of which Euler angles describe, for each value of the angle given.

    Args:

        axis: Axis label "X" or "Y or "Z".

        angle: any shape tensor of Euler angles in radians

    Returns:

        Rotation matrices as tensor of shape (..., 3, 3).

    """

    cos = torch.cos(angle)
    sin = torch.sin(angle)
    one = torch.ones_like(angle)
    zero = torch.zeros_like(angle)

    if axis == "X":
        R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
    elif axis == "Y":
        R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
    elif axis == "Z":
        R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
    else:
        raise ValueError("letter must be either X, Y or Z.")

    return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))

@torch.cuda.amp.autocast(enabled=False)
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str='XYZ') -> torch.Tensor:
    """

    Convert rotations given as Euler angles in radians to rotation matrices.

    Args:

        euler_angles: Euler angles in radians as tensor of shape (..., 3).

        convention: Convention string of three uppercase letters from

            {"X", "Y", and "Z"}.

    Returns:

        Rotation matrices as tensor of shape (..., 3, 3).

    """

    # print(euler_angles, euler_angles.dtype)

    if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
        raise ValueError("Invalid input euler angles.")
    if len(convention) != 3:
        raise ValueError("Convention must have 3 letters.")
    if convention[1] in (convention[0], convention[2]):
        raise ValueError(f"Invalid convention {convention}.")
    for letter in convention:
        if letter not in ("X", "Y", "Z"):
            raise ValueError(f"Invalid letter {letter} in convention string.")
    matrices = [
        _axis_angle_rotation(c, e)
        for c, e in zip(convention, torch.unbind(euler_angles, -1))
    ]
    
    return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])


@torch.cuda.amp.autocast(enabled=False)
def convert_poses(poses):
    # poses: [B, 4, 4]
    # return [B, 3], 4 rot, 3 trans
    out = torch.empty(poses.shape[0], 6, dtype=torch.float32, device=poses.device)
    out[:, :3] = matrix_to_euler_angles(poses[:, :3, :3])
    out[:, 3:] = poses[:, :3, 3]
    return out

@torch.cuda.amp.autocast(enabled=False)
def get_bg_coords(H, W, device):
    X = torch.arange(H, device=device) / (H - 1) * 2 - 1 # in [-1, 1]
    Y = torch.arange(W, device=device) / (W - 1) * 2 - 1 # in [-1, 1]
    xs, ys = custom_meshgrid(X, Y)
    bg_coords = torch.cat([xs.reshape(-1, 1), ys.reshape(-1, 1)], dim=-1).unsqueeze(0) # [1, H*W, 2], in [-1, 1]
    return bg_coords


@torch.cuda.amp.autocast(enabled=False)
def get_rays(poses, intrinsics, H, W, N=-1, patch_size=1, rect=None):
    ''' get rays

    Args:

        poses: [B, 4, 4], cam2world

        intrinsics: [4]

        H, W, N: int

    Returns:

        rays_o, rays_d: [B, N, 3]

        inds: [B, N]

    '''

    device = poses.device
    B = poses.shape[0]
    fx, fy, cx, cy = intrinsics

    if rect is not None:
        xmin, xmax, ymin, ymax = rect
        N = (xmax - xmin) * (ymax - ymin)

    i, j = custom_meshgrid(torch.linspace(0, W-1, W, device=device), torch.linspace(0, H-1, H, device=device)) # float
    i = i.t().reshape([1, H*W]).expand([B, H*W]) + 0.5
    j = j.t().reshape([1, H*W]).expand([B, H*W]) + 0.5

    results = {}

    if N > 0:
        N = min(N, H*W)

        if patch_size > 1:

            # random sample left-top cores.
            # NOTE: this impl will lead to less sampling on the image corner pixels... but I don't have other ideas.
            num_patch = N // (patch_size ** 2)
            inds_x = torch.randint(0, H - patch_size, size=[num_patch], device=device)
            inds_y = torch.randint(0, W - patch_size, size=[num_patch], device=device)
            inds = torch.stack([inds_x, inds_y], dim=-1) # [np, 2]

            # create meshgrid for each patch
            pi, pj = custom_meshgrid(torch.arange(patch_size, device=device), torch.arange(patch_size, device=device))
            offsets = torch.stack([pi.reshape(-1), pj.reshape(-1)], dim=-1) # [p^2, 2]

            inds = inds.unsqueeze(1) + offsets.unsqueeze(0) # [np, p^2, 2]
            inds = inds.view(-1, 2) # [N, 2]
            inds = inds[:, 0] * W + inds[:, 1] # [N], flatten

            inds = inds.expand([B, N])
        
        # only get rays in the specified rect
        elif rect is not None:
            # assert B == 1
            mask = torch.zeros(H, W, dtype=torch.bool, device=device)
            xmin, xmax, ymin, ymax = rect
            mask[xmin:xmax, ymin:ymax] = 1
            inds = torch.where(mask.view(-1))[0] # [nzn]
            inds = inds.unsqueeze(0) # [1, N]

        else:
            inds = torch.randint(0, H*W, size=[N], device=device) # may duplicate
            inds = inds.expand([B, N])

        i = torch.gather(i, -1, inds)
        j = torch.gather(j, -1, inds)


    else:
        inds = torch.arange(H*W, device=device).expand([B, H*W])
    
    results['i'] = i
    results['j'] = j
    results['inds'] = inds

    zs = torch.ones_like(i)
    xs = (i - cx) / fx * zs
    ys = (j - cy) / fy * zs
    directions = torch.stack((xs, ys, zs), dim=-1)
    directions = directions / torch.norm(directions, dim=-1, keepdim=True)
    
    rays_d = directions @ poses[:, :3, :3].transpose(-1, -2) # (B, N, 3)
    
    rays_o = poses[..., :3, 3] # [B, 3]
    rays_o = rays_o[..., None, :].expand_as(rays_d) # [B, N, 3]

    results['rays_o'] = rays_o
    results['rays_d'] = rays_d

    return results


def seed_everything(seed):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    #torch.backends.cudnn.deterministic = True
    #torch.backends.cudnn.benchmark = True


def torch_vis_2d(x, renormalize=False):
    # x: [3, H, W] or [1, H, W] or [H, W]
    import matplotlib.pyplot as plt
    import numpy as np
    import torch
    
    if isinstance(x, torch.Tensor):
        if len(x.shape) == 3:
            x = x.permute(1,2,0).squeeze()
        x = x.detach().cpu().numpy()
        
    print(f'[torch_vis_2d] {x.shape}, {x.dtype}, {x.min()} ~ {x.max()}')
    
    x = x.astype(np.float32)
    
    # renormalize
    if renormalize:
        x = (x - x.min(axis=0, keepdims=True)) / (x.max(axis=0, keepdims=True) - x.min(axis=0, keepdims=True) + 1e-8)

    plt.imshow(x)
    plt.show()


def extract_fields(bound_min, bound_max, resolution, query_func, S=128):

    X = torch.linspace(bound_min[0], bound_max[0], resolution).split(S)
    Y = torch.linspace(bound_min[1], bound_max[1], resolution).split(S)
    Z = torch.linspace(bound_min[2], bound_max[2], resolution).split(S)

    u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
    with torch.no_grad():
        for xi, xs in enumerate(X):
            for yi, ys in enumerate(Y):
                for zi, zs in enumerate(Z):
                    xx, yy, zz = custom_meshgrid(xs, ys, zs)
                    pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [S, 3]
                    val = query_func(pts).reshape(len(xs), len(ys), len(zs)).detach().cpu().numpy() # [S, 1] --> [x, y, z]
                    u[xi * S: xi * S + len(xs), yi * S: yi * S + len(ys), zi * S: zi * S + len(zs)] = val
    return u


def extract_geometry(bound_min, bound_max, resolution, threshold, query_func):
    #print('threshold: {}'.format(threshold))
    u = extract_fields(bound_min, bound_max, resolution, query_func)

    #print(u.shape, u.max(), u.min(), np.percentile(u, 50))
    
    vertices, triangles = mcubes.marching_cubes(u, threshold)

    b_max_np = bound_max.detach().cpu().numpy()
    b_min_np = bound_min.detach().cpu().numpy()

    vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
    return vertices, triangles


class PSNRMeter:
    def __init__(self):
        self.V = 0
        self.N = 0

    def clear(self):
        self.V = 0
        self.N = 0

    def prepare_inputs(self, *inputs):
        outputs = []
        for i, inp in enumerate(inputs):
            if torch.is_tensor(inp):
                inp = inp.detach().cpu().numpy()
            outputs.append(inp)

        return outputs

    def update(self, preds, truths):
        preds, truths = self.prepare_inputs(preds, truths) # [B, N, 3] or [B, H, W, 3], range in [0, 1]
          
        # simplified since max_pixel_value is 1 here.
        psnr = -10 * np.log10(np.mean((preds - truths) ** 2))
        
        self.V += psnr
        self.N += 1

    def measure(self):
        return self.V / self.N

    def write(self, writer, global_step, prefix=""):
        writer.add_scalar(os.path.join(prefix, "PSNR"), self.measure(), global_step)

    def report(self):
        return f'PSNR = {self.measure():.6f}'

class LPIPSMeter:
    def __init__(self, net='alex', device=None):
        self.V = 0
        self.N = 0
        self.net = net

        self.device = device if device is not None else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.fn = lpips.LPIPS(net=net).eval().to(self.device)

    def clear(self):
        self.V = 0
        self.N = 0

    def prepare_inputs(self, *inputs):
        outputs = []
        for i, inp in enumerate(inputs):
            inp = inp.permute(0, 3, 1, 2).contiguous() # [B, 3, H, W]
            inp = inp.to(self.device)
            outputs.append(inp)
        return outputs
    
    def update(self, preds, truths):
        preds, truths = self.prepare_inputs(preds, truths) # [B, H, W, 3] --> [B, 3, H, W], range in [0, 1]
        v = self.fn(truths, preds, normalize=True).item() # normalize=True: [0, 1] to [-1, 1]
        self.V += v
        self.N += 1
    
    def measure(self):
        return self.V / self.N

    def write(self, writer, global_step, prefix=""):
        writer.add_scalar(os.path.join(prefix, f"LPIPS ({self.net})"), self.measure(), global_step)

    def report(self):
        return f'LPIPS ({self.net}) = {self.measure():.6f}'


class LMDMeter:
    def __init__(self, backend='dlib', region='mouth'):
        self.backend = backend
        self.region = region # mouth or face

        if self.backend == 'dlib':
            import dlib

            # load checkpoint manually
            self.predictor_path = './shape_predictor_68_face_landmarks.dat'
            if not os.path.exists(self.predictor_path):
                raise FileNotFoundError('Please download dlib checkpoint from http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2')

            self.detector = dlib.get_frontal_face_detector()
            self.predictor = dlib.shape_predictor(self.predictor_path)

        else:

            import face_alignment
            try:
                self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False)
            except:
                self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False)

        self.V = 0
        self.N = 0
    
    def get_landmarks(self, img):

        if self.backend == 'dlib':
            dets = self.detector(img, 1)
            for det in dets:
                shape = self.predictor(img, det)
                # ref: https://github.com/PyImageSearch/imutils/blob/c12f15391fcc945d0d644b85194b8c044a392e0a/imutils/face_utils/helpers.py
                lms = np.zeros((68, 2), dtype=np.int32)
                for i in range(0, 68):
                    lms[i, 0] = shape.part(i).x
                    lms[i, 1] = shape.part(i).y
                break

        else:
            lms = self.predictor.get_landmarks(img)[-1]
        
        # self.vis_landmarks(img, lms)
        lms = lms.astype(np.float32)

        return lms

    def vis_landmarks(self, img, lms):
        plt.imshow(img)
        plt.plot(lms[48:68, 0], lms[48:68, 1], marker='o', markersize=1, linestyle='-', lw=2)
        plt.show()

    def clear(self):
        self.V = 0
        self.N = 0

    def prepare_inputs(self, *inputs):
        outputs = []
        for i, inp in enumerate(inputs):
            inp = inp.detach().cpu().numpy()
            inp = (inp * 255).astype(np.uint8)
            outputs.append(inp)
        return outputs
    
    def update(self, preds, truths):
        # assert B == 1
        preds, truths = self.prepare_inputs(preds[0], truths[0]) # [H, W, 3] numpy array

        # get lms
        lms_pred = self.get_landmarks(preds)
        lms_truth = self.get_landmarks(truths)

        if self.region == 'mouth':
            lms_pred = lms_pred[48:68]
            lms_truth = lms_truth[48:68]

        # avarage
        lms_pred = lms_pred - lms_pred.mean(0)
        lms_truth = lms_truth - lms_truth.mean(0)
        
        # distance
        dist = np.sqrt(((lms_pred - lms_truth) ** 2).sum(1)).mean(0)
        
        self.V += dist
        self.N += 1
    
    def measure(self):
        return self.V / self.N

    def write(self, writer, global_step, prefix=""):
        writer.add_scalar(os.path.join(prefix, f"LMD ({self.backend})"), self.measure(), global_step)

    def report(self):
        return f'LMD ({self.backend}) = {self.measure():.6f}' 
    

class Trainer(object):
    def __init__(self, 

                 name, # name of this experiment

                 opt, # extra conf

                 model, # network 

                 criterion=None, # loss function, if None, assume inline implementation in train_step

                 optimizer=None, # optimizer

                 ema_decay=None, # if use EMA, set the decay

                 ema_update_interval=1000, # update ema per $ training steps.

                 lr_scheduler=None, # scheduler

                 metrics=[], # metrics for evaluation, if None, use val_loss to measure performance, else use the first metric.

                 local_rank=0, # which GPU am I

                 world_size=1, # total num of GPUs

                 device=None, # device to use, usually setting to None is OK. (auto choose device)

                 mute=False, # whether to mute all print

                 fp16=False, # amp optimize level

                 eval_interval=1, # eval once every $ epoch

                 max_keep_ckpt=2, # max num of saved ckpts in disk

                 workspace='workspace', # workspace to save logs & ckpts

                 best_mode='min', # the smaller/larger result, the better

                 use_loss_as_metric=True, # use loss as the first metric

                 report_metric_at_train=False, # also report metrics at training

                 use_checkpoint="latest", # which ckpt to use at init time

                 use_tensorboardX=True, # whether to use tensorboard for logging

                 scheduler_update_every_step=False, # whether to call scheduler.step() after every train step

                 ):
        
        self.name = name
        self.opt = opt
        self.mute = mute
        self.metrics = metrics
        self.local_rank = local_rank
        self.world_size = world_size
        self.workspace = workspace
        self.ema_decay = ema_decay
        self.ema_update_interval = ema_update_interval
        self.fp16 = fp16
        self.best_mode = best_mode
        self.use_loss_as_metric = use_loss_as_metric
        self.report_metric_at_train = report_metric_at_train
        self.max_keep_ckpt = max_keep_ckpt
        self.eval_interval = eval_interval
        self.use_checkpoint = use_checkpoint
        self.use_tensorboardX = use_tensorboardX
        self.flip_finetune_lips = self.opt.finetune_lips
        self.flip_init_lips = self.opt.init_lips
        self.time_stamp = time.strftime("%Y-%m-%d_%H-%M-%S")
        self.scheduler_update_every_step = scheduler_update_every_step
        self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu')
        self.console = Console()

        model.to(self.device)
        if self.world_size > 1:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
            model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
        self.model = model

        if isinstance(criterion, nn.Module):
            criterion.to(self.device)
        self.criterion = criterion

        if optimizer is None:
            self.optimizer = optim.Adam(self.model.parameters(), lr=0.001, weight_decay=5e-4) # naive adam
        else:
            self.optimizer = optimizer(self.model)

        if lr_scheduler is None:
            self.lr_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda epoch: 1) # fake scheduler
        else:
            self.lr_scheduler = lr_scheduler(self.optimizer)

        if ema_decay is not None:
            self.ema = ExponentialMovingAverage(self.model.parameters(), decay=ema_decay)
        else:
            self.ema = None

        self.scaler = torch.cuda.amp.GradScaler(enabled=self.fp16)

        # optionally use LPIPS loss for patch-based training
        if self.opt.patch_size > 1 or self.opt.finetune_lips or True:
            import lpips
            # self.criterion_lpips_vgg = lpips.LPIPS(net='vgg').to(self.device)
            self.criterion_lpips_alex = lpips.LPIPS(net='alex').to(self.device)

        # variable init
        self.epoch = 0
        self.global_step = 0
        self.local_step = 0
        self.stats = {
            "loss": [],
            "valid_loss": [],
            "results": [], # metrics[0], or valid_loss
            "checkpoints": [], # record path of saved ckpt, to automatically remove old ckpt
            "best_result": None,
            }

        # auto fix
        if len(metrics) == 0 or self.use_loss_as_metric:
            self.best_mode = 'min'

        # workspace prepare
        self.log_ptr = None
        if self.workspace is not None:
            os.makedirs(self.workspace, exist_ok=True)        
            self.log_path = os.path.join(workspace, f"log_{self.name}.txt")
            self.log_ptr = open(self.log_path, "a+")

            self.ckpt_path = os.path.join(self.workspace, 'checkpoints')
            self.best_path = f"{self.ckpt_path}/{self.name}.pth"
            os.makedirs(self.ckpt_path, exist_ok=True)
            
        self.log(f'[INFO] Trainer: {self.name} | {self.time_stamp} | {self.device} | {"fp16" if self.fp16 else "fp32"} | {self.workspace}')
        self.log(f'[INFO] #parameters: {sum([p.numel() for p in model.parameters() if p.requires_grad])}')

        if self.workspace is not None:
            if self.use_checkpoint == "scratch":
                self.log("[INFO] Training from scratch ...")
            elif self.use_checkpoint == "latest":
                self.log("[INFO] Loading latest checkpoint ...")
                self.load_checkpoint()
            elif self.use_checkpoint == "latest_model":
                self.log("[INFO] Loading latest checkpoint (model only)...")
                self.load_checkpoint(model_only=True)
            elif self.use_checkpoint == "best":
                if os.path.exists(self.best_path):
                    self.log("[INFO] Loading best checkpoint ...")
                    self.load_checkpoint(self.best_path)
                else:
                    self.log(f"[INFO] {self.best_path} not found, loading latest ...")
                    self.load_checkpoint()
            else: # path to ckpt
                self.log(f"[INFO] Loading {self.use_checkpoint} ...")
                self.load_checkpoint(self.use_checkpoint)

    def __del__(self):
        if self.log_ptr: 
            self.log_ptr.close()


    def log(self, *args, **kwargs):
        if self.local_rank == 0:
            if not self.mute: 
                #print(*args)
                self.console.print(*args, **kwargs)
            if self.log_ptr: 
                print(*args, file=self.log_ptr)
                self.log_ptr.flush() # write immediately to file

    ### ------------------------------	

    def train_step(self, data):

        rays_o = data['rays_o'] # [B, N, 3]
        rays_d = data['rays_d'] # [B, N, 3]
        bg_coords = data['bg_coords'] # [1, N, 2]
        poses = data['poses'] # [B, 6]
        face_mask = data['face_mask'] # [B, N]
        eye_mask = data['eye_mask'] # [B, N]
        lhalf_mask = data['lhalf_mask']
        eye = data['eye'] # [B, 1]
        auds = data['auds'] # [B, 29, 16]
        index = data['index'] # [B]

        if not self.opt.torso:
            rgb = data['images'] # [B, N, 3]
        else:
            rgb = data['bg_torso_color']
    
        B, N, C = rgb.shape

        if self.opt.color_space == 'linear':
            rgb[..., :3] = srgb_to_linear(rgb[..., :3])
         
        bg_color = data['bg_color']
        
        if not self.opt.torso:
            outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=False, bg_color=bg_color, perturb=True, force_all_rays=False if (self.opt.patch_size <= 1 and not self.opt.train_camera) else True, **vars(self.opt))
        else:
            outputs = self.model.render_torso(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=False, bg_color=bg_color, perturb=True, force_all_rays=False if (self.opt.patch_size <= 1 and not self.opt.train_camera) else True, **vars(self.opt))

        if not self.opt.torso:
            pred_rgb = outputs['image']
        else:
            pred_rgb = outputs['torso_color']


        # loss factor
        step_factor = min(self.global_step / self.opt.iters, 1.0)

        # MSE loss
        loss = self.criterion(pred_rgb, rgb).mean(-1) # [B, N, 3] --> [B, N]

        if self.opt.torso:
            loss = loss.mean()
            loss += ((1 - self.model.anchor_points[:, 3])**2).mean()
            return  pred_rgb, rgb, loss

        # camera optim regularization
        # if self.opt.train_camera:
        #     cam_reg = self.model.camera_dR[index].abs().mean() + self.model.camera_dT[index].abs().mean() 
        #     loss = loss + 1e-2 * cam_reg

        if self.opt.unc_loss and not self.flip_finetune_lips:
            alpha = 0.2
            uncertainty = outputs['uncertainty'] # [N], abs sum
            beta = uncertainty + 1

            unc_weight = F.softmax(uncertainty, dim=-1) * N
            # print(unc_weight.shape, unc_weight.max(), unc_weight.min())
            loss *= alpha + (1-alpha)*((1 - step_factor) + step_factor * unc_weight.detach()).clamp(0, 10)            
            # loss *= unc_weight.detach()

            beta = uncertainty + 1
            norm_rgb = torch.norm((pred_rgb - rgb), dim=-1).detach()
            loss_u = norm_rgb / (2*beta**2) + (torch.log(beta)**2) / 2
            loss_u *= face_mask.view(-1)
            loss += step_factor * loss_u

            loss_static_uncertainty = (uncertainty * (~face_mask.view(-1)))
            loss += 1e-3 * step_factor * loss_static_uncertainty
        
        # patch-based rendering
        if self.opt.patch_size > 1 and not self.opt.finetune_lips:
            rgb = rgb.view(-1, self.opt.patch_size, self.opt.patch_size, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1
            pred_rgb = pred_rgb.view(-1, self.opt.patch_size, self.opt.patch_size, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1

            # torch_vis_2d(rgb[0])
            # torch_vis_2d(pred_rgb[0])

            # LPIPS loss ?
            loss_lpips = self.criterion_lpips_alex(pred_rgb, rgb)
            loss = loss + 0.1 * loss_lpips

        # lips finetune
        if self.opt.finetune_lips:
            xmin, xmax, ymin, ymax = data['rect']
            rgb = rgb.view(-1, xmax - xmin, ymax - ymin, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1
            pred_rgb = pred_rgb.view(-1, xmax - xmin, ymax - ymin, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1

            padding_h = max(0, (32 - rgb.shape[-2] + 1) // 2)
            padding_w = max(0, (32 - rgb.shape[-1] + 1) // 2)

            if padding_w or padding_h:
                rgb = torch.nn.functional.pad(rgb, (padding_w, padding_w, padding_h, padding_h))
                pred_rgb = torch.nn.functional.pad(pred_rgb, (padding_w, padding_w, padding_h, padding_h))

            # torch_vis_2d(rgb[0])
            # torch_vis_2d(pred_rgb[0])
            
            # LPIPS loss
            loss = loss + 0.01 * self.criterion_lpips_alex(pred_rgb, rgb)
        
        # flip every step... if finetune lips
        if self.flip_finetune_lips:
            self.opt.finetune_lips = not self.opt.finetune_lips
        
        loss = loss.mean()

        # weights_sum loss
        # entropy to encourage weights_sum to be 0 or 1.
        if self.opt.torso:
            alphas = outputs['torso_alpha'].clamp(1e-5, 1 - 1e-5)
            # alphas = alphas ** 2 # skewed entropy, favors 0 over 1
            loss_ws = - alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)
            loss = loss + 1e-4 * loss_ws.mean()

        else:
            alphas = outputs['weights_sum'].clamp(1e-5, 1 - 1e-5)
            loss_ws = - alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)
            loss = loss + 1e-4 * loss_ws.mean()

        # aud att loss (regions out of face should be static)
        if self.opt.amb_aud_loss and not self.opt.torso:
            ambient_aud = outputs['ambient_aud']
            loss_amb_aud = (ambient_aud * (~face_mask.view(-1))).mean()
            # gradually increase it
            lambda_amb = step_factor * self.opt.lambda_amb 
            loss += lambda_amb * loss_amb_aud

        # eye att loss
        if self.opt.amb_eye_loss and not self.opt.torso:
            ambient_eye = outputs['ambient_eye'] / self.opt.max_steps

            loss_cross = ((ambient_eye * ambient_aud.detach())*face_mask.view(-1)).mean()
            loss += lambda_amb * loss_cross
        
        # regularize
        if self.global_step % 16 == 0 and not self.flip_finetune_lips:
            xyzs, dirs, enc_a, ind_code, eye = outputs['rays']
            xyz_delta = (torch.rand(size=xyzs.shape, dtype=xyzs.dtype, device=xyzs.device) * 2 - 1) * 1e-3
            with torch.no_grad():
                sigmas_raw, rgbs_raw, ambient_aud_raw, ambient_eye_raw, unc_raw = self.model(xyzs, dirs, enc_a.detach(), ind_code.detach(), eye)
            sigmas_reg, rgbs_reg, ambient_aud_reg, ambient_eye_reg, unc_reg = self.model(xyzs+xyz_delta, dirs, enc_a.detach(), ind_code.detach(), eye)

            lambda_reg = step_factor * 1e-5
            reg_loss = 0
            if self.opt.unc_loss:
                reg_loss += self.criterion(unc_raw, unc_reg).mean() 
            if self.opt.amb_aud_loss:
                reg_loss += self.criterion(ambient_aud_raw, ambient_aud_reg).mean()
            if self.opt.amb_eye_loss:
                reg_loss += self.criterion(ambient_eye_raw, ambient_eye_reg).mean()
            
            loss += reg_loss * lambda_reg

        return pred_rgb, rgb, loss


    def eval_step(self, data):

        rays_o = data['rays_o'] # [B, N, 3]
        rays_d = data['rays_d'] # [B, N, 3]
        bg_coords = data['bg_coords'] # [1, N, 2]
        poses = data['poses'] # [B, 7]

        images = data['images'] # [B, H, W, 3/4]
        auds = data['auds']
        index = data['index'] # [B]
        eye = data['eye'] # [B, 1]

        B, H, W, C = images.shape

        if self.opt.color_space == 'linear':
            images[..., :3] = srgb_to_linear(images[..., :3])

        # eval with fixed background color
        # bg_color = 1
        bg_color = data['bg_color']

        outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=True, bg_color=bg_color, perturb=False, **vars(self.opt))

        pred_rgb = outputs['image'].reshape(B, H, W, 3)
        pred_depth = outputs['depth'].reshape(B, H, W)
        pred_ambient_aud = outputs['ambient_aud'].reshape(B, H, W)
        pred_ambient_eye = outputs['ambient_eye'].reshape(B, H, W)
        pred_uncertainty = outputs['uncertainty'].reshape(B, H, W)

        loss_raw = self.criterion(pred_rgb, images)
        loss = loss_raw.mean()

        return pred_rgb, pred_depth, pred_ambient_aud, pred_ambient_eye, pred_uncertainty, images, loss, loss_raw

    # moved out bg_color and perturb for more flexible control...
    def test_step(self, data, bg_color=None, perturb=False):  

        rays_o = data['rays_o'] # [B, N, 3]
        rays_d = data['rays_d'] # [B, N, 3]
        bg_coords = data['bg_coords'] # [1, N, 2]
        poses = data['poses'] # [B, 7]

        auds = data['auds'] # [B, 29, 16]
        index = data['index']
        H, W = data['H'], data['W']

        # allow using a fixed eye area (avoid eye blink) at test
        if self.opt.exp_eye and self.opt.fix_eye >= 0:
            eye = torch.FloatTensor([self.opt.fix_eye]).view(1, 1).to(self.device)
        else:
            eye = data['eye'] # [B, 1]

        if bg_color is not None:    
            bg_color = bg_color.to(self.device)
        else:
            bg_color = data['bg_color']

        self.model.testing = True
        outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=True, bg_color=bg_color, perturb=perturb, **vars(self.opt))
        self.model.testing = False

        pred_rgb = outputs['image'].reshape(-1, H, W, 3)
        pred_depth = outputs['depth'].reshape(-1, H, W)

        return pred_rgb, pred_depth


    def save_mesh(self, save_path=None, resolution=256, threshold=10):

        if save_path is None:
            save_path = os.path.join(self.workspace, 'meshes', f'{self.name}_{self.epoch}.ply')

        self.log(f"==> Saving mesh to {save_path}")

        os.makedirs(os.path.dirname(save_path), exist_ok=True)

        def query_func(pts):
            with torch.no_grad():
                with torch.cuda.amp.autocast(enabled=self.fp16):
                    sigma = self.model.density(pts.to(self.device))['sigma']
            return sigma

        vertices, triangles = extract_geometry(self.model.aabb_infer[:3], self.model.aabb_infer[3:], resolution=resolution, threshold=threshold, query_func=query_func)

        mesh = trimesh.Trimesh(vertices, triangles, process=False) # important, process=True leads to seg fault...
        mesh.export(save_path)

        self.log(f"==> Finished saving mesh.")

    ### ------------------------------

    def train(self, train_loader, valid_loader, max_epochs):
        if self.use_tensorboardX and self.local_rank == 0:
            self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name))

        # mark untrained region (i.e., not covered by any camera from the training dataset)
        if self.model.cuda_ray:
            self.model.mark_untrained_grid(train_loader._data.poses, train_loader._data.intrinsics)

        for epoch in range(self.epoch + 1, max_epochs + 1):
            self.epoch = epoch

            self.train_one_epoch(train_loader)

            if self.workspace is not None and self.local_rank == 0:
                self.save_checkpoint(full=True, best=False)

            if self.epoch % self.eval_interval == 0:
                self.evaluate_one_epoch(valid_loader)
                self.save_checkpoint(full=False, best=True)

        if self.use_tensorboardX and self.local_rank == 0:
            self.writer.close()

    def evaluate(self, loader, name=None):
        self.use_tensorboardX, use_tensorboardX = False, self.use_tensorboardX
        self.evaluate_one_epoch(loader, name)
        self.use_tensorboardX = use_tensorboardX

    def test(self, loader, save_path=None, name=None, write_image=False):

        if save_path is None:
            save_path = os.path.join(self.workspace, 'results')

        if name is None:
            name = f'{self.name}_ep{self.epoch:04d}'

        os.makedirs(save_path, exist_ok=True)
        
        self.log(f"==> Start Test, save results to {save_path}")

        pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')
        self.model.eval()

        all_preds = []
        all_preds_depth = []

        with torch.no_grad():

            for i, data in enumerate(loader):
                
                with torch.cuda.amp.autocast(enabled=self.fp16):
                    preds, preds_depth = self.test_step(data)                
                
                path = os.path.join(save_path, f'{name}_{i:04d}_rgb.png')
                path_depth = os.path.join(save_path, f'{name}_{i:04d}_depth.png')

                #self.log(f"[INFO] saving test image to {path}")

                if self.opt.color_space == 'linear':
                    preds = linear_to_srgb(preds)

                pred = preds[0].detach().cpu().numpy()
                pred = (pred * 255).astype(np.uint8)

                pred_depth = preds_depth[0].detach().cpu().numpy()
                pred_depth = (pred_depth * 255).astype(np.uint8)

                if write_image:
                    imageio.imwrite(path, pred)
                    imageio.imwrite(path_depth, pred_depth)

                all_preds.append(pred)
                all_preds_depth.append(pred_depth)

                pbar.update(loader.batch_size)

        # write video
        all_preds = np.stack(all_preds, axis=0)
        all_preds_depth = np.stack(all_preds_depth, axis=0)
        imageio.mimwrite(os.path.join(save_path, f'{name}.mp4'), all_preds, fps=25, quality=8, macro_block_size=1)
        imageio.mimwrite(os.path.join(save_path, f'{name}_depth.mp4'), all_preds_depth, fps=25, quality=8, macro_block_size=1)
        # imageio.mimwrite(os.path.join(save_path, f'{name}_depth.mp4'), all_preds_depth, fps=25, quality=8, macro_block_size=1)
        # print('-'*100. self.opt.aud)
        if self.opt.aud != '':
            # print(f'ffmpeg -i {os.path.join(save_path, f"{name}.mp4")} -i {self.opt.aud} -strict -2 {os.path.join(save_path, f"{name}_audio.mp4")} -y')
            os.system(f'ffmpeg -i {os.path.join(save_path, f"{name}.mp4")} -i {self.opt.aud} -strict -2 {os.path.join(save_path, f"{name}_audio.mp4")} -y')

        self.log(f"==> Finished Test.")

    # [GUI] just train for 16 steps, without any other overhead that may slow down rendering.
    def train_gui(self, train_loader, step=16):

        self.model.train()

        total_loss = torch.tensor([0], dtype=torch.float32, device=self.device)
        
        loader = iter(train_loader)

        # mark untrained grid
        if self.global_step == 0:
            self.model.mark_untrained_grid(train_loader._data.poses, train_loader._data.intrinsics)

        for _ in range(step):
            
            # mimic an infinite loop dataloader (in case the total dataset is smaller than step)
            try:
                data = next(loader)
            except StopIteration:
                loader = iter(train_loader)
                data = next(loader)

            # update grid every 16 steps
            if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0:
                with torch.cuda.amp.autocast(enabled=self.fp16):
                    self.model.update_extra_state()
            
            self.global_step += 1

            self.optimizer.zero_grad()

            with torch.cuda.amp.autocast(enabled=self.fp16):
                preds, truths, loss = self.train_step(data)
         
            self.scaler.scale(loss).backward()
            self.scaler.step(self.optimizer)
            self.scaler.update()
            
            if self.scheduler_update_every_step:
                self.lr_scheduler.step()

            total_loss += loss.detach()

            if self.ema is not None and self.global_step % self.ema_update_interval == 0:
                self.ema.update()

        average_loss = total_loss.item() / step

        if not self.scheduler_update_every_step:
            if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
                self.lr_scheduler.step(average_loss)
            else:
                self.lr_scheduler.step()

        outputs = {
            'loss': average_loss,
            'lr': self.optimizer.param_groups[0]['lr'],
        }
        
        return outputs
    
    # [GUI] test on a single image
    def test_gui(self, pose, intrinsics, W, H, auds, eye=None, index=0, bg_color=None, spp=1, downscale=1):
        
        # render resolution (may need downscale to for better frame rate)
        rH = int(H * downscale)
        rW = int(W * downscale)
        intrinsics = intrinsics * downscale

        if auds is not None:
            auds = auds.to(self.device)

        pose = torch.from_numpy(pose).unsqueeze(0).to(self.device)
        rays = get_rays(pose, intrinsics, rH, rW, -1)

        bg_coords = get_bg_coords(rH, rW, self.device)

        if eye is not None:
            eye = torch.FloatTensor([eye]).view(1, 1).to(self.device)

        data = {
            'rays_o': rays['rays_o'],
            'rays_d': rays['rays_d'],
            'H': rH,
            'W': rW,
            'auds': auds,
            'index': [index], # support choosing index for individual codes
            'eye': eye,
            'poses': pose,
            'bg_coords': bg_coords,
        }
        
        self.model.eval()

        if self.ema is not None:
            self.ema.store()
            self.ema.copy_to()

        with torch.no_grad():
            with torch.cuda.amp.autocast(enabled=self.fp16):
                # here spp is used as perturb random seed!
                # face: do not perturb for the first spp, else lead to scatters.
                preds, preds_depth = self.test_step(data, bg_color=bg_color, perturb=False if spp == 1 else spp)

        if self.ema is not None:
            self.ema.restore()

        # interpolation to the original resolution
        if downscale != 1:
            # TODO: have to permute twice with torch...
            preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='bilinear').permute(0, 2, 3, 1).contiguous()
            preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1)

        if self.opt.color_space == 'linear':
            preds = linear_to_srgb(preds)

        pred = preds[0].detach().cpu().numpy()
        pred_depth = preds_depth[0].detach().cpu().numpy()

        outputs = {
            'image': pred,
            'depth': pred_depth,
        }

        return outputs

    # [GUI] test with provided data
    def test_gui_with_data(self, data, W, H):
        
        self.model.eval()

        if self.ema is not None:
            self.ema.store()
            self.ema.copy_to()

        with torch.no_grad():
            with torch.cuda.amp.autocast(enabled=self.fp16):
                # here spp is used as perturb random seed!
                # face: do not perturb for the first spp, else lead to scatters.
                preds, preds_depth = self.test_step(data, perturb=False)

        if self.ema is not None:
            self.ema.restore()

        if self.opt.color_space == 'linear':
            preds = linear_to_srgb(preds)

        # the H/W in data may be differnt to GUI, so we still need to resize...
        preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='bilinear').permute(0, 2, 3, 1).contiguous()
        preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1)

        pred = preds[0].detach().cpu().numpy()
        pred_depth = preds_depth[0].detach().cpu().numpy()

        outputs = {
            'image': pred,
            'depth': pred_depth,
        }

        return outputs

    def train_one_epoch(self, loader):
        self.log(f"==> Start Training Epoch {self.epoch}, lr={self.optimizer.param_groups[0]['lr']:.6f} ...")

        total_loss = 0
        if self.local_rank == 0 and self.report_metric_at_train:
            for metric in self.metrics:
                metric.clear()

        self.model.train()

        # distributedSampler: must call set_epoch() to shuffle indices across multiple epochs
        # ref: https://pytorch.org/docs/stable/data.html
        if self.world_size > 1:
            loader.sampler.set_epoch(self.epoch)
        
        if self.local_rank == 0:
            pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, mininterval=1, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')

        self.local_step = 0

        for data in loader:
            # update grid every 16 steps
            if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0:
                with torch.cuda.amp.autocast(enabled=self.fp16):
                    self.model.update_extra_state()
                    
            self.local_step += 1
            self.global_step += 1

            self.optimizer.zero_grad()

            with torch.cuda.amp.autocast(enabled=self.fp16):
                preds, truths, loss = self.train_step(data)
         
            self.scaler.scale(loss).backward()
            self.scaler.step(self.optimizer)
            self.scaler.update()

            if self.scheduler_update_every_step:
                self.lr_scheduler.step()

            loss_val = loss.item()
            total_loss += loss_val

            if self.ema is not None and self.global_step % self.ema_update_interval == 0:
                self.ema.update()

            if self.local_rank == 0:
                if self.report_metric_at_train:
                    for metric in self.metrics:
                        metric.update(preds, truths)
                        
                if self.use_tensorboardX:
                    self.writer.add_scalar("train/loss", loss_val, self.global_step)
                    self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]['lr'], self.global_step)

                if self.scheduler_update_every_step:
                    pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f}), lr={self.optimizer.param_groups[0]['lr']:.6f}")
                else:
                    pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})")
                pbar.update(loader.batch_size)

        average_loss = total_loss / self.local_step
        self.stats["loss"].append(average_loss)

        if self.local_rank == 0:
            pbar.close()
            if self.report_metric_at_train:
                for metric in self.metrics:
                    self.log(metric.report(), style="red")
                    if self.use_tensorboardX:
                        metric.write(self.writer, self.epoch, prefix="train")
                    metric.clear()

        if not self.scheduler_update_every_step:
            if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
                self.lr_scheduler.step(average_loss)
            else:
                self.lr_scheduler.step()

        self.log(f"==> Finished Epoch {self.epoch}.")


    def evaluate_one_epoch(self, loader, name=None):
        self.log(f"++> Evaluate at epoch {self.epoch} ...")

        if name is None:
            name = f'{self.name}_ep{self.epoch:04d}'

        total_loss = 0
        if self.local_rank == 0:
            for metric in self.metrics:
                metric.clear()

        self.model.eval()

        if self.ema is not None:
            self.ema.store()
            self.ema.copy_to()

        if self.local_rank == 0:
            pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')

        with torch.no_grad():
            self.local_step = 0

            for data in loader:    
                self.local_step += 1

                with torch.cuda.amp.autocast(enabled=self.fp16):
                    preds, preds_depth, pred_ambient_aud, pred_ambient_eye, pred_uncertainty, truths, loss, loss_raw = self.eval_step(data)
                
                loss_val = loss.item()
                total_loss += loss_val

                # only rank = 0 will perform evaluation.
                if self.local_rank == 0:

                    for metric in self.metrics:
                        metric.update(preds, truths)

                    # save image
                    save_path = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_rgb.png')
                    save_path_depth = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_depth.png')
                    # save_path_error = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_errormap.png')
                    save_path_ambient_aud = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_aud.png')
                    save_path_ambient_eye = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_eye.png')
                    save_path_uncertainty = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_uncertainty.png')
                    #save_path_gt = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_gt.png')

                    #self.log(f"==> Saving validation image to {save_path}")
                    os.makedirs(os.path.dirname(save_path), exist_ok=True)

                    if self.opt.color_space == 'linear':
                        preds = linear_to_srgb(preds)

                    pred = preds[0].detach().cpu().numpy()
                    pred_depth = preds_depth[0].detach().cpu().numpy()
                    # loss_raw = loss_raw[0].mean(-1).detach().cpu().numpy()
                    # loss_raw = (loss_raw - np.min(loss_raw)) / (np.max(loss_raw) - np.min(loss_raw))
                    pred_ambient_aud = pred_ambient_aud[0].detach().cpu().numpy()
                    pred_ambient_aud /= np.max(pred_ambient_aud)
                    pred_ambient_eye = pred_ambient_eye[0].detach().cpu().numpy()
                    pred_ambient_eye /= np.max(pred_ambient_eye)
                    # pred_ambient = pred_ambient / 16
                    # print(pred_ambient.shape)
                    pred_uncertainty = pred_uncertainty[0].detach().cpu().numpy()
                    # pred_uncertainty = (pred_uncertainty - np.min(pred_uncertainty)) / (np.max(pred_uncertainty) - np.min(pred_uncertainty))
                    pred_uncertainty /= np.max(pred_uncertainty)

                    cv2.imwrite(save_path, cv2.cvtColor((pred * 255).astype(np.uint8), cv2.COLOR_RGB2BGR))

                    if not self.opt.torso:
                        cv2.imwrite(save_path_depth, (pred_depth * 255).astype(np.uint8))
                        # cv2.imwrite(save_path_error, (loss_raw * 255).astype(np.uint8))
                        cv2.imwrite(save_path_ambient_aud, (pred_ambient_aud * 255).astype(np.uint8))
                        cv2.imwrite(save_path_ambient_eye, (pred_ambient_eye * 255).astype(np.uint8))
                        cv2.imwrite(save_path_uncertainty, (pred_uncertainty * 255).astype(np.uint8))
                        #cv2.imwrite(save_path_gt, cv2.cvtColor((linear_to_srgb(truths[0].detach().cpu().numpy()) * 255).astype(np.uint8), cv2.COLOR_RGB2BGR))

                    pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})")
                    pbar.update(loader.batch_size)


        average_loss = total_loss / self.local_step
        self.stats["valid_loss"].append(average_loss)

        if self.local_rank == 0:
            pbar.close()
            if not self.use_loss_as_metric and len(self.metrics) > 0:
                result = self.metrics[0].measure()
                self.stats["results"].append(result if self.best_mode == 'min' else - result) # if max mode, use -result
            else:
                self.stats["results"].append(average_loss) # if no metric, choose best by min loss

            for metric in self.metrics:
                self.log(metric.report(), style="blue")
                if self.use_tensorboardX:
                    metric.write(self.writer, self.epoch, prefix="evaluate")
                metric.clear()

        if self.ema is not None:
            self.ema.restore()

        self.log(f"++> Evaluate epoch {self.epoch} Finished.")

    def save_checkpoint(self, name=None, full=False, best=False, remove_old=True):

        if name is None:
            name = f'{self.name}_ep{self.epoch:04d}'

        state = {
            'epoch': self.epoch,
            'global_step': self.global_step,
            'stats': self.stats,
        }

    
        state['mean_count'] = self.model.mean_count
        state['mean_density'] = self.model.mean_density
        state['mean_density_torso'] = self.model.mean_density_torso

        if full:
            state['optimizer'] = self.optimizer.state_dict()
            state['lr_scheduler'] = self.lr_scheduler.state_dict()
            state['scaler'] = self.scaler.state_dict()
            if self.ema is not None:
                state['ema'] = self.ema.state_dict()
        
        if not best:

            state['model'] = self.model.state_dict()

            file_path = f"{self.ckpt_path}/{name}.pth"

            if remove_old:
                self.stats["checkpoints"].append(file_path)

                if len(self.stats["checkpoints"]) > self.max_keep_ckpt:
                    old_ckpt = self.stats["checkpoints"].pop(0)
                    if os.path.exists(old_ckpt):
                        os.remove(old_ckpt)

            torch.save(state, file_path)

        else:    
            if len(self.stats["results"]) > 0:
                # always save new as best... (since metric cannot really reflect performance...)
                if True:

                    # save ema results 
                    if self.ema is not None:
                        self.ema.store()
                        self.ema.copy_to()

                    state['model'] = self.model.state_dict()

                    # we don't consider continued training from the best ckpt, so we discard the unneeded density_grid to save some storage (especially important for dnerf)
                    if 'density_grid' in state['model']:
                        del state['model']['density_grid']

                    if self.ema is not None:
                        self.ema.restore()
                    
                    torch.save(state, self.best_path)
            else:
                self.log(f"[WARN] no evaluated results found, skip saving best checkpoint.")
            
    def load_checkpoint(self, checkpoint=None, model_only=False):
        if checkpoint is None:
            checkpoint_list = sorted(glob.glob(f'{self.ckpt_path}/{self.name}_ep*.pth'))
            if checkpoint_list:
                checkpoint = checkpoint_list[-1]
                self.log(f"[INFO] Latest checkpoint is {checkpoint}")
            else:
                self.log("[WARN] No checkpoint found, model randomly initialized.")
                return

        checkpoint_dict = torch.load(checkpoint, map_location=self.device)
        
        if 'model' not in checkpoint_dict:
            self.model.load_state_dict(checkpoint_dict)
            self.log("[INFO] loaded bare model.")
            return

        missing_keys, unexpected_keys = self.model.load_state_dict(checkpoint_dict['model'], strict=False)
        self.log("[INFO] loaded model.")
        if len(missing_keys) > 0:
            self.log(f"[WARN] missing keys: {missing_keys}")
        if len(unexpected_keys) > 0:
            self.log(f"[WARN] unexpected keys: {unexpected_keys}")   

        if self.ema is not None and 'ema' in checkpoint_dict:
            self.ema.load_state_dict(checkpoint_dict['ema'])

    
        if 'mean_count' in checkpoint_dict:
            self.model.mean_count = checkpoint_dict['mean_count']
        if 'mean_density' in checkpoint_dict:
            self.model.mean_density = checkpoint_dict['mean_density']
        if 'mean_density_torso' in checkpoint_dict:
            self.model.mean_density_torso = checkpoint_dict['mean_density_torso']
        
        if model_only:
            return

        self.stats = checkpoint_dict['stats']
        self.epoch = checkpoint_dict['epoch']
        self.global_step = checkpoint_dict['global_step']
        self.log(f"[INFO] load at epoch {self.epoch}, global step {self.global_step}")
        
        if self.optimizer and 'optimizer' in checkpoint_dict:
            try:
                self.optimizer.load_state_dict(checkpoint_dict['optimizer'])
                self.log("[INFO] loaded optimizer.")
            except:
                self.log("[WARN] Failed to load optimizer.")
        
        if self.lr_scheduler and 'lr_scheduler' in checkpoint_dict:
            try:
                self.lr_scheduler.load_state_dict(checkpoint_dict['lr_scheduler'])
                self.log("[INFO] loaded scheduler.")
            except:
                self.log("[WARN] Failed to load scheduler.")
        
        if self.scaler and 'scaler' in checkpoint_dict:
            try:
                self.scaler.load_state_dict(checkpoint_dict['scaler'])
                self.log("[INFO] loaded scaler.")
            except:
                self.log("[WARN] Failed to load scaler.")
                
def load_wav(path, sr):
    return librosa.core.load(path, sr=sr)[0]


def preemphasis(wav, k):
    return signal.lfilter([1, -k], [1], wav)


def melspectrogram(wav):
    D = _stft(preemphasis(wav, 0.97))
    S = _amp_to_db(_linear_to_mel(np.abs(D))) - 20

    return _normalize(S)


def _stft(y):
    return librosa.stft(y=y, n_fft=800, hop_length=200, win_length=800)


def _linear_to_mel(spectogram):
    global _mel_basis
    _mel_basis = _build_mel_basis()
    return np.dot(_mel_basis, spectogram)


def _build_mel_basis():
    return librosa.filters.mel(sr=16000, n_fft=800, n_mels=80, fmin=55, fmax=7600)


def _amp_to_db(x):
    min_level = np.exp(-5 * np.log(10))
    return 20 * np.log10(np.maximum(min_level, x))


def _normalize(S):
    return np.clip((2 * 4.) * ((S - -100) / (--100)) - 4., -4., 4.)


class AudDataset(object):
    def __init__(self, wavpath):
        wav = load_wav(wavpath, 16000)

        self.orig_mel = melspectrogram(wav).T
        self.data_len = int((self.orig_mel.shape[0] - 16) / 80. * float(25))

    def get_frame_id(self, frame):
        return int(basename(frame).split('.')[0])

    def crop_audio_window(self, spec, start_frame):
        if type(start_frame) == int:
            start_frame_num = start_frame
        else:
            start_frame_num = self.get_frame_id(start_frame)
        start_idx = int(80. * (start_frame_num / float(25)))

        end_idx = start_idx + 16

        return spec[start_idx: end_idx, :]

    def __len__(self):
        return self.data_len

    def __getitem__(self, idx):

        mel = self.crop_audio_window(self.orig_mel.copy(), idx)
        if (mel.shape[0] != 16):
            raise Exception('mel.shape[0] != 16')
        mel = torch.FloatTensor(mel.T).unsqueeze(0)

        return mel