File size: 23,993 Bytes
3f56d56
75d3f3c
88c2f54
385df8a
3f56d56
 
 
 
75d3f3c
 
 
825259a
 
 
3f56d56
0494538
 
 
 
 
3f56d56
 
0494538
 
e42de32
 
 
 
3f56d56
825259a
 
 
3f56d56
 
 
0494538
3f56d56
825259a
 
 
3f56d56
0494538
 
 
 
 
 
 
 
 
3f56d56
0494538
3f56d56
 
0494538
3f56d56
 
 
 
 
 
 
 
0494538
3f56d56
 
0494538
3f56d56
 
0494538
 
3f56d56
 
0494538
 
 
 
 
 
3f56d56
825259a
 
 
3f56d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0494538
 
 
 
 
 
3f56d56
825259a
 
 
3f56d56
 
0494538
 
 
3f56d56
 
76ee41e
 
 
 
e42de32
76ee41e
 
 
 
88c2f54
 
 
 
d642c92
 
 
 
 
4abdf78
88c2f54
 
044b1fe
3f56d56
4abdf78
76ee41e
ccc7052
d642c92
 
 
 
 
 
 
 
 
75d3f3c
d642c92
 
4abdf78
49bfe31
d642c92
94f7531
d642c92
 
61615af
1657aae
d642c92
1657aae
 
4abdf78
 
61615af
4abdf78
71d7fa0
d642c92
4abdf78
3f56d56
e1e1b10
3f56d56
4abdf78
76ee41e
d642c92
 
 
 
 
 
 
 
 
75d3f3c
d642c92
 
94f7531
49bfe31
d642c92
94f7531
d642c92
 
61615af
1657aae
d642c92
1657aae
 
4abdf78
 
61615af
4abdf78
71d7fa0
d642c92
4abdf78
3f56d56
044b1fe
3f56d56
4abdf78
76ee41e
d642c92
 
 
 
 
 
 
 
 
75d3f3c
d642c92
 
 
 
49bfe31
d642c92
 
 
61615af
1657aae
d642c92
1657aae
 
4abdf78
 
61615af
4abdf78
d642c92
 
4abdf78
3f56d56
044b1fe
3f56d56
4abdf78
76ee41e
d642c92
 
 
 
 
 
 
 
 
75d3f3c
d642c92
49bfe31
d642c92
 
 
 
 
 
 
 
61615af
1657aae
d642c92
1657aae
 
4abdf78
 
61615af
4abdf78
d642c92
 
4abdf78
3f56d56
044b1fe
3f56d56
76ee41e
d642c92
 
 
 
 
 
 
 
 
75d3f3c
d642c92
 
 
 
 
 
 
61615af
1657aae
d642c92
1657aae
 
d642c92
4abdf78
 
 
 
 
 
 
 
d642c92
4abdf78
 
 
 
 
 
 
3f56d56
465565a
f2d4244
465565a
de3c393
465565a
b43d613
7fd75fd
3f56d56
ccf4bd7
 
 
 
 
94f7531
49bfe31
94f7531
3f56d56
00ae72d
3f56d56
 
 
 
 
 
 
ccf4bd7
 
 
 
 
94f7531
49bfe31
94f7531
3f56d56
00ae72d
3f56d56
 
 
 
 
 
 
ccf4bd7
 
 
 
1e451c2
ccf4bd7
1e451c2
49bfe31
3f56d56
00ae72d
3f56d56
 
 
 
 
 
 
ccf4bd7
 
 
 
49bfe31
ccf4bd7
94f7531
49bfe31
ccf4bd7
 
3f56d56
00ae72d
3f56d56
 
 
 
 
 
 
ccf4bd7
 
 
 
49bfe31
ccf4bd7
49bfe31
 
3f56d56
00ae72d
3f56d56
 
 
 
 
 
 
 
4abdf78
 
 
 
7fd75fd
 
 
 
 
 
 
 
 
 
 
 
8518d8c
 
044b1fe
 
8518d8c
 
7fd75fd
 
4abdf78
3f56d56
 
 
 
 
 
 
94f7531
3f56d56
94f7531
3f56d56
 
 
 
 
e1e1b10
3f56d56
 
 
 
 
 
 
 
 
94f7531
3f56d56
94f7531
3f56d56
 
 
 
 
e1e1b10
3f56d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e1b10
3f56d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e1b10
3f56d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4abdf78
3f56d56
 
e42de32
8518d8c
e42de32
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import os
import torch
import shutil
import logging
import gradio as gr

from audio_separator.separator import Separator

device = "cuda" if torch.cuda.is_available() else "cpu"
use_autocast = device == "cuda"

#=========================#
#     Roformer Models     #
#=========================#
ROFORMER_MODELS = {
    'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt',
    'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt',
    'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt',
    'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt',
    'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt',
    'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt',
    'Mel-Roformer-Denoise-Aufr33-Aggr': 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt',
    'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt',
    'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt',
    'MelBand Roformer Kim | Inst V1 by Unwa': 'melband_roformer_inst_v1.ckpt',
    'MelBand Roformer Kim | Inst V2 by Unwa': 'melband_roformer_inst_v2.ckpt',
    'MelBand Roformer Kim | InstVoc Duality V1 by Unwa': 'melband_roformer_instvoc_duality_v1.ckpt',
    'MelBand Roformer Kim | InstVoc Duality V2 by Unwa': 'melband_roformer_instvox_duality_v2.ckpt',
}
#=========================#
#      MDX23C Models      #
#=========================#
MDX23C_MODELS = [
    'MDX23C-8KFFT-InstVoc_HQ.ckpt',
    'MDX23C-8KFFT-InstVoc_HQ_2.ckpt',
    'MDX23C_D1581.ckpt',
]
#=========================#
#     MDXN-NET Models     #
#=========================#
MDXNET_MODELS = [
    'UVR-MDX-NET-Crowd_HQ_1.onnx',
    'UVR-MDX-NET-Inst_1.onnx',
    'UVR-MDX-NET-Inst_2.onnx',
    'UVR-MDX-NET-Inst_3.onnx',
    'UVR-MDX-NET-Inst_HQ_1.onnx',
    'UVR-MDX-NET-Inst_HQ_2.onnx',
    'UVR-MDX-NET-Inst_HQ_3.onnx',
    'UVR-MDX-NET-Inst_HQ_4.onnx',
    'UVR-MDX-NET-Inst_HQ_5.onnx',
    'UVR-MDX-NET-Inst_full_292.onnx',
    'UVR-MDX-NET-Voc_FT.onnx',
    'UVR-MDX-NET_Inst_82_beta.onnx',
    'UVR-MDX-NET_Inst_90_beta.onnx',
    'UVR-MDX-NET_Inst_187_beta.onnx',
    'UVR-MDX-NET_Main_340.onnx',
    'UVR-MDX-NET_Main_390.onnx',
    'UVR-MDX-NET_Main_406.onnx',
    'UVR-MDX-NET_Main_427.onnx',
    'UVR-MDX-NET_Main_438.onnx',
    'UVR_MDXNET_1_9703.onnx',
    'UVR_MDXNET_2_9682.onnx',
    'UVR_MDXNET_3_9662.onnx',
    'UVR_MDXNET_9482.onnx',
    'UVR_MDXNET_KARA.onnx',
    'UVR_MDXNET_KARA_2.onnx',
    'UVR_MDXNET_Main.onnx',
    'kuielab_a_bass.onnx',
    'kuielab_a_drums.onnx',
    'kuielab_a_other.onnx',
    'kuielab_a_vocals.onnx',
    'kuielab_b_bass.onnx',
    'kuielab_b_drums.onnx',
    'kuielab_b_other.onnx',
    'kuielab_b_vocals.onnx',
    'Kim_Inst.onnx',
    'Kim_Vocal_1.onnx',
    'Kim_Vocal_2.onnx',
    'Reverb_HQ_By_FoxJoy.onnx',
]
#========================#
#     VR-ARCH Models     #
#========================#
VR_ARCH_MODELS = [
    '1_HP-UVR.pth',
    '2_HP-UVR.pth',
    '3_HP-Vocal-UVR.pth',
    '4_HP-Vocal-UVR.pth',
    '5_HP-Karaoke-UVR.pth',
    '6_HP-Karaoke-UVR.pth',
    '7_HP2-UVR.pth',
    '8_HP2-UVR.pth',
    '9_HP2-UVR.pth',
    '10_SP-UVR-2B-32000-1.pth',
    '11_SP-UVR-2B-32000-2.pth',
    '12_SP-UVR-3B-44100.pth',
    '13_SP-UVR-4B-44100-1.pth',
    '14_SP-UVR-4B-44100-2.pth',
    '15_SP-UVR-MID-44100-1.pth',
    '16_SP-UVR-MID-44100-2.pth',
    '17_HP-Wind_Inst-UVR.pth',
    'MGM_HIGHEND_v4.pth',
    'MGM_LOWEND_A_v4.pth',
    'MGM_LOWEND_B_v4.pth',
    'MGM_MAIN_v4.pth',
    'UVR-BVE-4B_SN-44100-1.pth',
    'UVR-DeEcho-DeReverb.pth',
    'UVR-De-Echo-Aggressive.pth',
    'UVR-De-Echo-Normal.pth',
    'UVR-DeNoise-Lite.pth',
    'UVR-DeNoise.pth',
]
#=======================#
#     DEMUCS Models     #
#=======================#
DEMUCS_MODELS = [
    'hdemucs_mmi.yaml',
    'htdemucs.yaml',
    'htdemucs_6s.yaml',
    'htdemucs_ft.yaml',
]

def print_message(input_file, model_name):
    """Prints information about the audio separation process."""
    base_name = os.path.splitext(os.path.basename(input_file))[0]
    print("\n")
    print("🎵 Audio-Separator 🎵")
    print("Input audio:", base_name)
    print("Separation Model:", model_name)
    print("Audio Separation Process...")

def prepare_output_dir(input_file, output_dir):
    """Create a directory for the output files and clean it if it already exists."""
    base_name = os.path.splitext(os.path.basename(input_file))[0]
    out_dir = os.path.join(output_dir, base_name)
    try:
        if os.path.exists(out_dir):
            shutil.rmtree(out_dir)
        os.makedirs(out_dir)
    except Exception as e:
        raise RuntimeError(f"Failed to prepare output directory {out_dir}: {e}")
    return out_dir

def roformer_separator(audio, model_key, seg_size, override_seg_size, overlap, pitch_shift, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, progress=gr.Progress()):
    """Separate audio using Roformer model."""
    base_name = os.path.splitext(os.path.basename(audio))[0]
    print_message(audio, model_key)
    model = ROFORMER_MODELS[model_key]
    try:
        out_dir = prepare_output_dir(audio, out_dir)
        separator = Separator(
            log_level=logging.WARNING,
            model_file_dir=model_dir,
            output_dir=out_dir,
            output_format=out_format,
            normalization_threshold=norm_thresh,
            amplification_threshold=amp_thresh,
            use_autocast=use_autocast,
            mdxc_params={
                "segment_size": seg_size,
                "override_model_segment_size": override_seg_size,
                "batch_size": batch_size,
                "overlap": overlap,
                "pitch_shift": pitch_shift,
            }
        )

        progress(0.2, desc="Model loaded...")
        separator.load_model(model_filename=model)

        progress(0.7, desc="Audio separated...")
        separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
        print(f"Separation complete!\nResults: {', '.join(separation)}")

        stems = [os.path.join(out_dir, file_name) for file_name in separation]
        return stems[1], stems[0]
    except Exception as e:
        raise RuntimeError(f"Roformer separation failed: {e}") from e

def mdx23c_separator(audio, model, seg_size, override_seg_size, overlap, pitch_shift, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, progress=gr.Progress(track_tqdm=True)):
    """Separate audio using MDX23C model."""
    base_name = os.path.splitext(os.path.basename(audio))[0]
    print_message(audio, model)
    try:
        out_dir = prepare_output_dir(audio, out_dir)
        separator = Separator(
            log_level=logging.WARNING,
            model_file_dir=model_dir,
            output_dir=out_dir,
            output_format=out_format,
            normalization_threshold=norm_thresh,
            amplification_threshold=amp_thresh,
            use_autocast=use_autocast,
            mdxc_params={
                "segment_size": seg_size,
                "override_model_segment_size": override_seg_size,
                "batch_size": batch_size,
                "overlap": overlap,
                "pitch_shift": pitch_shift,
            }
        )

        progress(0.2, desc="Model loaded...")
        separator.load_model(model_filename=model)

        progress(0.7, desc="Audio separated...")
        separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
        print(f"Separation complete!\nResults: {', '.join(separation)}")

        stems = [os.path.join(out_dir, file_name) for file_name in separation]
        return stems[1], stems[0]
    except Exception as e:
        raise RuntimeError(f"MDX23C separation failed: {e}") from e

def mdx_separator(audio, model, hop_length, seg_size, overlap, denoise, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, progress=gr.Progress()):
    """Separate audio using MDX-NET model."""
    base_name = os.path.splitext(os.path.basename(audio))[0]
    print_message(audio, model)
    try:
        out_dir = prepare_output_dir(audio, out_dir)
        separator = Separator(
            log_level=logging.WARNING,
            model_file_dir=model_dir,
            output_dir=out_dir,
            output_format=out_format,
            normalization_threshold=norm_thresh,
            amplification_threshold=amp_thresh,
            use_autocast=use_autocast,
            mdx_params={
                "hop_length": hop_length,
                "segment_size": seg_size,
                "overlap": overlap,
                "batch_size": batch_size,
                "enable_denoise": denoise,
            }
        )

        progress(0.2, desc="Model loaded...")
        separator.load_model(model_filename=model)

        progress(0.7, desc="Audio separated...")
        separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
        print(f"Separation complete!\nResults: {', '.join(separation)}")

        stems = [os.path.join(out_dir, file_name) for file_name in separation]
        return stems[0], stems[1]
    except Exception as e:
        raise RuntimeError(f"MDX-NET separation failed: {e}") from e

def vr_separator(audio, model, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, model_dir, out_dir, out_format, norm_thresh, amp_thresh, batch_size, progress=gr.Progress()):
    """Separate audio using VR ARCH model."""
    base_name = os.path.splitext(os.path.basename(audio))[0]
    print_message(audio, model)
    try:
        out_dir = prepare_output_dir(audio, out_dir)
        separator = Separator(
            log_level=logging.WARNING,
            model_file_dir=model_dir,
            output_dir=out_dir,
            output_format=out_format,
            normalization_threshold=norm_thresh,
            amplification_threshold=amp_thresh,
            use_autocast=use_autocast,
            vr_params={
                "batch_size": batch_size,
                "window_size": window_size,
                "aggression": aggression,
                "enable_tta": tta,
                "enable_post_process": post_process,
                "post_process_threshold": post_process_threshold,
                "high_end_process": high_end_process,
            }
        )

        progress(0.2, desc="Model loaded...")
        separator.load_model(model_filename=model)

        progress(0.7, desc="Audio separated...")
        separation = separator.separate(audio, f"{base_name}_(Stem1)", f"{base_name}_(Stem2)")
        print(f"Separation complete!\nResults: {', '.join(separation)}")

        stems = [os.path.join(out_dir, file_name) for file_name in separation]
        return stems[0], stems[1]
    except Exception as e:
        raise RuntimeError(f"VR ARCH separation failed: {e}") from e

def demucs_separator(audio, model, seg_size, shifts, overlap, segments_enabled, model_dir, out_dir, out_format, norm_thresh, amp_thresh, progress=gr.Progress()):
    """Separate audio using Demucs model."""
    print_message(audio, model)
    try:
        out_dir = prepare_output_dir(audio, out_dir)
        separator = Separator(
            log_level=logging.WARNING,
            model_file_dir=model_dir,
            output_dir=out_dir,
            output_format=out_format,
            normalization_threshold=norm_thresh,
            amplification_threshold=amp_thresh,
            use_autocast=use_autocast,
            demucs_params={
                "segment_size": seg_size,
                "shifts": shifts,
                "overlap": overlap,
                "segments_enabled": segments_enabled,
            }
        )

        progress(0.2, desc="Model loaded...")
        separator.load_model(model_filename=model)

        progress(0.7, desc="Audio separated...")
        separation = separator.separate(audio)
        print(f"Separation complete!\nResults: {', '.join(separation)}")

        stems = [os.path.join(out_dir, file_name) for file_name in separation]
        
        if model == "htdemucs_6s.yaml":
            return stems[0], stems[1], stems[2], stems[3], stems[4], stems[5]
        else:
            return stems[0], stems[1], stems[2], stems[3], None, None
    except Exception as e:
        raise RuntimeError(f"Demucs separation failed: {e}") from e

def update_stems(model):
    if model == "htdemucs_6s.yaml":
        return gr.update(visible=True)
    else:
        return gr.update(visible=False)

with gr.Blocks(
    title="🎵 Audio-Separator 🎵",
    css="footer{display:none !important}",
    theme="theNeofr/Syne"
) as app:
    gr.HTML("<h1> 🎵 Audio-Separator 🎵 </h1>")
    
    with gr.Tab("Roformer"):
        with gr.Group():
            with gr.Row():
                roformer_model = gr.Dropdown(label="Select the Model", choices=list(ROFORMER_MODELS.keys()))
            with gr.Row():
                roformer_seg_size = gr.Slider(minimum=32, maximum=4000, step=32, value=256, label="Segment Size", info="Larger consumes more resources, but may give better results.")
                roformer_override_seg_size = gr.Checkbox(value=False, label="Override segment size", info="Override model default segment size instead of using the model default value.")
                roformer_overlap = gr.Slider(minimum=2, maximum=10, step=1, value=8, label="Overlap", info="Amount of overlap between prediction windows. Lower is better but slower.")
                roformer_pitch_shift = gr.Slider(minimum=-12, maximum=12, step=1, value=0, label="Pitch shift", info="Shift audio pitch by a number of semitones while processing. may improve output for deep/high vocals.")
        with gr.Row():
            roformer_audio = gr.Audio(label="Input Audio", type="filepath")
        with gr.Row():
            roformer_button = gr.Button("Separate!", variant="primary")
        with gr.Row():
            roformer_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
            roformer_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)

    with gr.Tab("MDX23C"):
        with gr.Group():
            with gr.Row():
                mdx23c_model = gr.Dropdown(label="Select the Model", choices=MDX23C_MODELS)
            with gr.Row():
                mdx23c_seg_size = gr.Slider(minimum=32, maximum=4000, step=32, value=256, label="Segment Size", info="Larger consumes more resources, but may give better results.")
                mdx23c_override_seg_size = gr.Checkbox(value=False, label="Override segment size", info="Override model default segment size instead of using the model default value.")
                mdx23c_overlap = gr.Slider(minimum=2, maximum=50, step=1, value=8, label="Overlap", info="Amount of overlap between prediction windows. Higher is better but slower.")
                mdx23c_pitch_shift = gr.Slider(minimum=-12, maximum=12, step=1, value=0, label="Pitch shift", info="Shift audio pitch by a number of semitones while processing. may improve output for deep/high vocals.")
        with gr.Row():
            mdx23c_audio = gr.Audio(label="Input Audio", type="filepath")
        with gr.Row():
            mdx23c_button = gr.Button("Separate!", variant="primary")
        with gr.Row():
            mdx23c_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
            mdx23c_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)

    with gr.Tab("MDX-NET"):
        with gr.Group():
            with gr.Row():
                mdx_model = gr.Dropdown(label="Select the Model", choices=MDXNET_MODELS)
            with gr.Row():
                mdx_hop_length = gr.Slider(minimum=32, maximum=2048, step=32, value=1024, label="Hop Length", info="Usually called stride in neural networks; only change if you know what you're doing.")
                mdx_seg_size = gr.Slider(minimum=32, maximum=4000, step=32, value=256, label="Segment Size", info="Larger consumes more resources, but may give better results.")
                mdx_overlap = gr.Slider(minimum=0.001, maximum=0.999, step=0.001, value=0.25, label="Overlap", info="Amount of overlap between prediction windows. Higher is better but slower.")
                mdx_denoise = gr.Checkbox(value=False, label="Denoise", info="Enable denoising after separation.")
        with gr.Row():
            mdx_audio = gr.Audio(label="Input Audio", type="filepath")
        with gr.Row():
            mdx_button = gr.Button("Separate!", variant="primary")
        with gr.Row():
            mdx_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
            mdx_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)

    with gr.Tab("VR ARCH"):
        with gr.Group():
            with gr.Row():
                vr_model = gr.Dropdown(label="Select the Model", choices=VR_ARCH_MODELS)
            with gr.Row():
                vr_window_size = gr.Slider(minimum=320, maximum=1024, step=32, value=512, label="Window Size", info="Balance quality and speed. 1024 = fast but lower, 320 = slower but better quality.")
                vr_aggression = gr.Slider(minimum=1, maximum=50, step=1, value=5, label="Agression", info="Intensity of primary stem extraction.")
                vr_tta = gr.Checkbox(value=False, label="TTA", info="Enable Test-Time-Augmentation; slow but improves quality.")
                vr_post_process = gr.Checkbox(value=False, label="Post Process", info="Identify leftover artifacts within vocal output; may improve separation for some songs.")
                vr_post_process_threshold = gr.Slider(minimum=0.1, maximum=0.3, step=0.1, value=0.2, label="Post Process Threshold", info="Threshold for post-processing.")
                vr_high_end_process = gr.Checkbox(value=False, label="High End Process", info="Mirror the missing frequency range of the output.")
        with gr.Row():
            vr_audio = gr.Audio(label="Input Audio", type="filepath")
        with gr.Row():
            vr_button = gr.Button("Separate!", variant="primary")
        with gr.Row():
            vr_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
            vr_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)

    with gr.Tab("Demucs"):
        with gr.Group():
            with gr.Row():
                demucs_model = gr.Dropdown(label="Select the Model", choices=DEMUCS_MODELS)
            with gr.Row():
                demucs_seg_size = gr.Slider(minimum=1, maximum=100, step=1, value=40, label="Segment Size", info="Size of segments into which the audio is split. Higher = slower but better quality.")
                demucs_shifts = gr.Slider(minimum=0, maximum=20, step=1, value=2, label="Shifts", info="Number of predictions with random shifts, higher = slower but better quality.")
                demucs_overlap = gr.Slider(minimum=0.001, maximum=0.999, step=0.001, value=0.25, label="Overlap", info="Overlap between prediction windows. Higher = slower but better quality.")
                demucs_segments_enabled = gr.Checkbox(value=True, label="Segment-wise processing", info="Enable segment-wise processing.")
        with gr.Row():
            demucs_audio = gr.Audio(label="Input Audio", type="filepath")
        with gr.Row():
            demucs_button = gr.Button("Separate!", variant="primary")
        with gr.Row():
            demucs_stem1 = gr.Audio(label="Stem 1", type="filepath", interactive=False)
            demucs_stem2 = gr.Audio(label="Stem 2", type="filepath", interactive=False)
        with gr.Row():
            demucs_stem3 = gr.Audio(label="Stem 3", type="filepath", interactive=False)
            demucs_stem4 = gr.Audio(label="Stem 4", type="filepath", interactive=False)
        with gr.Row(visible=False) as stem6:
            demucs_stem5 = gr.Audio(label="Stem 5", type="filepath", interactive=False)
            demucs_stem6 = gr.Audio(label="Stem 6", type="filepath", interactive=False)


    with gr.Tab("General settings"):
        with gr.Group():
            model_file_dir = gr.Textbox(value="/tmp/audio-separator-models/", label="Directory to cache model files", info="The directory where model files are stored.", placeholder="/tmp/audio-separator-models/")
            with gr.Row():
                output_dir = gr.Textbox(value="output", label="File output directory", info="The directory where output files will be saved.", placeholder="output")
                output_format = gr.Dropdown(value="wav", choices=["wav", "flac", "mp3"], label="Output Format", info="The format of the output audio file.")
            with gr.Row():
                norm_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.9, label="Normalization threshold", info="The threshold for audio normalization.")
                amp_threshold = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.6, label="Amplification threshold", info="The threshold for audio amplification.")
            with gr.Row():
                batch_size = gr.Slider(minimum=1, maximum=16, step=1, value=1, label="Batch Size", info="Larger consumes more RAM but may process slightly faster.")
    with gr.Tab("Credits"):
        gr.Markdown("""
        Politrees - gradio webui\n
        theNeodev - mod the ui\n
        nomadkaraoke - original project    
        """)

            
    demucs_model.change(update_stems, inputs=[demucs_model], outputs=stem6)

    roformer_button.click(
        roformer_separator,
        inputs=[
            roformer_audio,
            roformer_model,
            roformer_seg_size,
            roformer_override_seg_size,
            roformer_overlap,
            roformer_pitch_shift,
            model_file_dir,
            output_dir,
            output_format,
            norm_threshold,
            amp_threshold,
            batch_size,
        ],
        outputs=[roformer_stem1, roformer_stem2],
    )
    mdx23c_button.click(
        mdx23c_separator,
        inputs=[
            mdx23c_audio,
            mdx23c_model,
            mdx23c_seg_size,
            mdx23c_override_seg_size,
            mdx23c_overlap,
            mdx23c_pitch_shift,
            model_file_dir,
            output_dir,
            output_format,
            norm_threshold,
            amp_threshold,
            batch_size,
        ],
        outputs=[mdx23c_stem1, mdx23c_stem2],
    )
    mdx_button.click(
        mdx_separator,
        inputs=[
            mdx_audio,
            mdx_model,
            mdx_hop_length,
            mdx_seg_size,
            mdx_overlap,
            mdx_denoise,
            model_file_dir,
            output_dir,
            output_format,
            norm_threshold,
            amp_threshold,
            batch_size,
        ],
        outputs=[mdx_stem1, mdx_stem2],
    )
    vr_button.click(
        vr_separator,
        inputs=[
            vr_audio,
            vr_model,
            vr_window_size,
            vr_aggression,
            vr_tta,
            vr_post_process,
            vr_post_process_threshold,
            vr_high_end_process,
            model_file_dir,
            output_dir,
            output_format,
            norm_threshold,
            amp_threshold,
            batch_size,
        ],
        outputs=[vr_stem1, vr_stem2],
    )
    demucs_button.click(
        demucs_separator,
        inputs=[
            demucs_audio,
            demucs_model,
            demucs_seg_size,
            demucs_shifts,
            demucs_overlap,
            demucs_segments_enabled,
            model_file_dir,
            output_dir,
            output_format,
            norm_threshold,
            amp_threshold,
        ],
        outputs=[demucs_stem1, demucs_stem2, demucs_stem3, demucs_stem4, demucs_stem5, demucs_stem6],
    )

def main():
    app.launch(share=True, debug=True)

if __name__ == "__main__":
    main()