Spaces:
Runtime error
Runtime error
Commit
·
ff0c15d
1
Parent(s):
63dfee4
Create ingest.py
Browse files
ingest.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain.document_loaders import PyPDFLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
+
from constants import CHROMA_SETTINGS
|
7 |
+
persist_directory = "db"
|
8 |
+
|
9 |
+
|
10 |
+
def main():
|
11 |
+
st.title("PDF Processor")
|
12 |
+
uploaded_file = st.file_uploader("Upload a PDF file")
|
13 |
+
if uploaded_file is not None:
|
14 |
+
st.write("Processing PDF...")
|
15 |
+
loader = PyPDFLoader(uploaded_file.read())
|
16 |
+
documents = loader.load()
|
17 |
+
st.write("Splitting into chunks")
|
18 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
19 |
+
texts = text_splitter.split_documents(documents)
|
20 |
+
st.write("Loading sentence transformers model")
|
21 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
22 |
+
st.write("Creating embeddings. This may take some time...")
|
23 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
24 |
+
db.persist()
|
25 |
+
db = None
|
26 |
+
st.success("Ingestion complete! You can now run privateGPT.py to query your documents")
|
27 |
+
|
28 |
+
|
29 |
+
if __name__ == "__main__":
|
30 |
+
main()
|