rvc_inferpy / app.py
John6666's picture
Upload 4 files
6597bcb verified
raw
history blame
6.56 kB
import gradio as gr
from rvc_inferpy import infer_audio
import os
import zipfile
import shutil
import urllib.request
import gdown
main_dir = os.getcwd()
models_dir = os.path.join(main_dir, "models")
os.makedirs(models_dir, exist_ok=True)
audio_files=[]
for filename in os.listdir("./audios"):
if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
def extract_zip(extraction_folder, zip_name):
os.makedirs(extraction_folder, exist_ok=True)
with zipfile.ZipFile(zip_name, 'r') as zip_ref:
zip_ref.extractall(extraction_folder)
os.remove(zip_name)
index_filepath, model_filepath = None, None
for root, dirs, files in os.walk(extraction_folder):
for name in files:
if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
index_filepath = os.path.join(root, name)
if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
model_filepath = os.path.join(root, name)
if not model_filepath:
raise Exception(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
if index_filepath:
os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
for filepath in os.listdir(extraction_folder):
if os.path.isdir(os.path.join(extraction_folder, filepath)):
shutil.rmtree(os.path.join(extraction_folder, filepath))
def download_online_model(url, dir_name):
try:
print(f'[~] Downloading voice model with name {dir_name}...')
zip_name = dir_name + ".zip"
extraction_folder = os.path.join(models_dir, dir_name)
if os.path.exists(extraction_folder):
raise Exception(f'Voice model directory {dir_name} already exists! Choose a different name.')
if 'drive.google.com' in url:
gdown.download(url, output=zip_name, use_cookies=True, quiet=True, fuzzy=True)
else:
urllib.request.urlretrieve(url, zip_name)
print('[~] Extracting zip file...')
extract_zip(extraction_folder, zip_name)
print(f'[+] {dir_name} Model successfully downloaded!')
except Exception as e:
raise Exception(str(e))
def process_audio(model_name, sound_path, f0_change, f0_method, output_format):
try:
print(model_name, sound_path, f0_change, f0_method, output_format) #
# https://github.com/TheNeodev/rvc_inferpy/tree/main?tab=readme-ov-file#as-a-dependency-in-a-python-project <= wrong
# https://github.com/TheNeodev/rvc_inferpy/blob/main/rvc_inferpy/infer.py#L117 <= correct
inferred_audio = infer_audio(
model_name=model_name,
audio_path=sound_path,
f0_change=f0_change,
f0_method=f0_method
)
# You might need additional logic for handling output_format here
return inferred_audio
except Exception as e:
print(e)
raise gr.Error(e)
def save_to_wav2(dropbox):
file_path=dropbox
shutil.move(file_path,'./audios')
return os.path.join('./audios',os.path.basename(file_path))
def get_name():
if len(audio_files) > 0:
return sorted(audio_files)[0]
else:
return ''
def change_choices2():
audio_files=[]
for filename in os.listdir("./audios"):
if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
return {"choices": sorted(audio_files), "__type__": "update"}, {"__type__": "update"}
def get_model_files():
model_files=[]
for root, dirs, files in os.walk(models_dir):
for name in files:
if filename.endswith(('.pth')):
model_files.append(os.path.join(root, name).replace('\\', '/'))
if len(model_files) == 0: model_files = [""]
return model_files
def update_model_name():
return gr.update(choices=get_model_files())
with gr.Blocks(theme=gr.themes.Base(), title=" rvc inferpy") as demo:
gr.Markdown("<h1><center>rvc inferpy (Neo RVC Fork)</center></h1>")
gr.Markdown("most simplest RVC inference")
with gr.Tabs():
with gr.TabItem("Inference"):
model_name_input = gr.Dropdown(label="Model Name", choices=get_model_files(), value=get_model_files()[0], allow_custom_value=True)
with gr.Row():
dropbox = gr.Audio(label="Upload Audio for inference")
with gr.Row():
input_audio0 = gr.Dropdown(
label="Choose your audio.",
value="",
choices=audio_files
)
dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[input_audio0])\
.then(fn=change_choices2, inputs=None, outputs=[input_audio0])\
.then(fn=update_model_name, inputs=None, outputs=[model_name_input])
with gr.Row():
f0_change_input = gr.Number(label="F0 Change", value=0)
f0_method_input = gr.Dropdown(label="F0 Method", choices=["crepe", "dio", "harvest", "rmvpe", "fcpe", "hybrid[fcpe+rmvpe]"], value="crepe")
output_format_input = gr.Dropdown(label="Output Format", choices=["wav", "mp3"], value="wav")
submit_button = gr.Button("Run Inference")
output_audio = gr.Audio(label="Inferred Audio", type="filepath")
submit_button.click(
fn=process_audio,
inputs=[model_name_input, input_audio0, f0_change_input, f0_method_input, output_format_input],
outputs=output_audio
)
with gr.TabItem("Download Models"):
with gr.Row():
url_input = gr.Textbox(label="Model URL")
url_name_input = gr.Textbox(label="Model Name")
download_button = gr.Button("Download")
url_output = gr.Textbox(label="Output")
download_button.click(
fn=download_online_model,
inputs=[url_input, url_name_input],
outputs=url_output
)
demo.launch()