theAIguy commited on
Commit
11842f0
·
1 Parent(s): bcbef87

added numpy requirements

Browse files
Files changed (2) hide show
  1. requirements.txt +2 -1
  2. triplet_margin_loss.py +8 -7
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  # TODO: fix github to release
2
  git+https://github.com/huggingface/evaluate.git@505123230059f9605da8951880eddc9d1fbf4278
3
- datasets~=2.0
 
 
1
  # TODO: fix github to release
2
  git+https://github.com/huggingface/evaluate.git@505123230059f9605da8951880eddc9d1fbf4278
3
+ datasets~=2.0
4
+ numpy
triplet_margin_loss.py CHANGED
@@ -15,14 +15,15 @@
15
 
16
  import datasets
17
  import evaluate
 
18
 
19
 
20
  _DESCRIPTION = """
21
- Triplet margin loss is a loss function that measures a relative similarity between the samples.
22
- A triplet is comprised of reference input 'anchor(a)', matching input 'positive examples(p)' and non-matching input 'negative examples(n)'.
23
- The loss function for each triplet is given by:
24
- L(a, p, n) = max{d(a,p) - d(a,n) + margin, 0}
25
- where d(x, y) is the 2nd order (Euclidean) pairwise distance between x and y
26
  """
27
 
28
 
@@ -97,8 +98,8 @@ class TripletMarginLoss(evaluate.EvaluationModule):
97
  )
98
 
99
  def _compute(self, anchor, positive, negative, margin=1.0):
100
- d_a_p = sum((anchor - positive)**2)
101
- d_a_n = sum((anchor - negative)**2)
102
  return {
103
  "accuracy": float(
104
  max(d_a_p - d_a_n + margin, 0)
 
15
 
16
  import datasets
17
  import evaluate
18
+ import numpy as np
19
 
20
 
21
  _DESCRIPTION = """
22
+ Triplet margin loss is a loss function that measures a relative similarity between the samples.\n
23
+ A triplet is comprised of reference input 'anchor (a)', matching input 'positive examples (p)' and non-matching input 'negative examples (n)'.
24
+ The loss function for each triplet is given by:\n
25
+ L(a, p, n) = max{d(a,p) - d(a,n) + margin, 0}\n
26
+ where d(x, y) is the 2nd order (Euclidean) pairwise distance between x and y.
27
  """
28
 
29
 
 
98
  )
99
 
100
  def _compute(self, anchor, positive, negative, margin=1.0):
101
+ d_a_p = np.sqrt(sum((anchor - positive)**2))
102
+ d_a_n = np.sqrt(sum((anchor - negative)**2))
103
  return {
104
  "accuracy": float(
105
  max(d_a_p - d_a_n + margin, 0)