|
import base64 |
|
import gradio as gr |
|
import librosa |
|
import logging |
|
import os |
|
import soundfile as sf |
|
import subprocess |
|
import tempfile |
|
import urllib.request |
|
|
|
from datetime import datetime |
|
from time import time |
|
|
|
from examples import examples |
|
from model import UETASRModel |
|
|
|
|
|
def get_duration(filename: str) -> float: |
|
return librosa.get_duration(path=filename) |
|
|
|
|
|
def convert_to_wav(in_filename: str) -> str: |
|
out_filename = os.path.splitext(in_filename)[0] + ".wav" |
|
logging.info(f"Converting {in_filename} to {out_filename}") |
|
y, sr = librosa.load(in_filename, sr=16000) |
|
sf.write(out_filename, y, sr) |
|
return out_filename |
|
|
|
|
|
def build_html_output(s: str, style: str = "result_item_success"): |
|
return f""" |
|
<div class='result'> |
|
<div class='result_item {style}'> |
|
{s} |
|
</div> |
|
</div> |
|
""" |
|
|
|
|
|
def process_url( |
|
url: str, |
|
decoding_method: str, |
|
beam_size: int, |
|
max_symbols_per_step: int, |
|
): |
|
logging.info(f"Processing URL: {url}") |
|
with tempfile.NamedTemporaryFile() as f: |
|
try: |
|
urllib.request.urlretrieve(url, f.name) |
|
return process(in_filename=f.name, |
|
decoding_method=decoding_method, |
|
beam_size=beam_size, |
|
max_symbols_per_step=max_symbols_per_step) |
|
except Exception as e: |
|
logging.info(str(e)) |
|
return "", build_html_output(str(e), "result_item_error") |
|
|
|
|
|
def process_uploaded_file( |
|
in_filename: str, |
|
decoding_method: str, |
|
beam_size: int, |
|
max_symbols_per_step: int, |
|
): |
|
if in_filename is None or in_filename == "": |
|
return "", build_html_output( |
|
"Please first upload a file and then click " |
|
'the button "submit for recognition"', |
|
"result_item_error", |
|
) |
|
|
|
logging.info(f"Processing uploaded file: {in_filename}") |
|
try: |
|
return process(in_filename=in_filename, |
|
decoding_method=decoding_method, |
|
beam_size=beam_size, |
|
max_symbols_per_step=max_symbols_per_step) |
|
except Exception as e: |
|
logging.info(str(e)) |
|
return "", build_html_output(str(e), "result_item_error") |
|
|
|
|
|
def process_microphone( |
|
in_filename: str, |
|
decoding_method: str, |
|
beam_size: int, |
|
max_symbols_per_step: int, |
|
): |
|
if in_filename is None or in_filename == "": |
|
return "", build_html_output( |
|
"Please first upload a file and then click " |
|
'the button "submit for recognition"', |
|
"result_item_error", |
|
) |
|
|
|
logging.info(f"Processing microphone: {in_filename}") |
|
try: |
|
return process(in_filename=in_filename, |
|
decoding_method=decoding_method, |
|
beam_size=beam_size, |
|
max_symbols_per_step=max_symbols_per_step) |
|
except Exception as e: |
|
logging.info(str(e)) |
|
return "", build_html_output(str(e), "result_item_error") |
|
|
|
|
|
def process( |
|
in_filename: str, |
|
decoding_method: str, |
|
beam_size: int, |
|
max_symbols_per_step: int, |
|
): |
|
logging.info(f"in_filename: {in_filename}") |
|
|
|
filename = convert_to_wav(in_filename) |
|
|
|
now = datetime.now() |
|
date_time = now.strftime("%d/%m/%Y, %H:%M:%S.%f") |
|
logging.info(f"Started at {date_time}") |
|
|
|
repo_id = "thanhtvt/uetasr-conformer_30.3m" |
|
|
|
start = time() |
|
|
|
recognizer = UETASRModel(repo_id, |
|
decoding_method, |
|
beam_size, |
|
max_symbols_per_step) |
|
text = recognizer.predict(filename) |
|
|
|
date_time = now.strftime("%d/%m/%Y, %H:%M:%S.%f") |
|
end = time() |
|
|
|
duration = get_duration(filename) |
|
rtf = (end - start) / duration |
|
|
|
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s") |
|
|
|
info = f""" |
|
Wave duration : {duration: .3f} s <br/> |
|
Processing time: {end - start: .3f} s <br/> |
|
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/> |
|
""" |
|
if rtf > 1: |
|
info += ( |
|
"<br/>We are loading required resources for the first run. " |
|
"Please run again to measure the real RTF.<br/>" |
|
) |
|
|
|
logging.info(info) |
|
|
|
return text, build_html_output(info) |
|
|
|
|
|
title = "Vietnamese Automatic Speech Recognition with UETASR" |
|
description = """ |
|
This space shows how to use UETASR for Vietnamese Automatic Speech Recognition. |
|
|
|
It is running on CPU provided by Hugging Face 🤗 |
|
|
|
See more information by visiting the [Github repository](https://github.com/thanhtvt/uetasr/) |
|
""" |
|
|
|
|
|
|
|
css = """ |
|
.result {display:flex;flex-direction:column} |
|
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} |
|
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} |
|
.result_item_error {background-color:#ff7070;color:white;align-self:start} |
|
""" |
|
|
|
demo = gr.Blocks(css=css) |
|
|
|
|
|
with demo: |
|
gr.Markdown(title) |
|
|
|
decode_method_radio = gr.Radio( |
|
label="Decoding method", |
|
choices=["greedy_search", "beam_search"], |
|
value="greedy_search", |
|
interactive=True, |
|
) |
|
|
|
beam_size_slider = gr.Slider( |
|
label="Beam size", |
|
minimum=1, |
|
maximum=20, |
|
step=1, |
|
value=1, |
|
interactive=False, |
|
) |
|
|
|
def interact_beam_slider(decoding_method): |
|
if decoding_method == "greedy_search": |
|
return gr.update(value=1, interactive=False) |
|
else: |
|
return gr.update(interactive=True) |
|
|
|
decode_method_radio.change(interact_beam_slider, |
|
decode_method_radio, |
|
beam_size_slider) |
|
|
|
max_symbols_per_step_slider = gr.Slider( |
|
label="Maximum symbols per step", |
|
minimum=1, |
|
maximum=20, |
|
step=1, |
|
value=5, |
|
interactive=True, |
|
visible=True, |
|
) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Upload from disk"): |
|
uploaded_file = gr.Audio( |
|
source="upload", |
|
type="filepath", |
|
label="Upload from disk", |
|
) |
|
upload_button = gr.Button("Submit for recognition") |
|
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file") |
|
uploaded_html_info = gr.HTML(label="Info") |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=uploaded_file, |
|
outputs=[uploaded_output, uploaded_html_info], |
|
fn=process_uploaded_file, |
|
) |
|
|
|
with gr.TabItem("Record from microphone"): |
|
microphone = gr.Audio( |
|
source="microphone", |
|
type="filepath", |
|
label="Record from microphone", |
|
) |
|
|
|
record_button = gr.Button("Submit for recognition") |
|
recorded_output = gr.Textbox(label="Recognized speech from recordings") |
|
recorded_html_info = gr.HTML(label="Info") |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=microphone, |
|
outputs=[uploaded_output, uploaded_html_info], |
|
fn=process_microphone, |
|
) |
|
|
|
with gr.TabItem("From URL"): |
|
url_textbox = gr.Textbox( |
|
max_lines=1, |
|
placeholder="URL to an audio file", |
|
label="URL", |
|
interactive=True, |
|
) |
|
|
|
url_button = gr.Button("Submit for recognition") |
|
url_output = gr.Textbox(label="Recognized speech from URL") |
|
url_html_info = gr.HTML(label="Info") |
|
|
|
upload_button.click( |
|
process_uploaded_file, |
|
inputs=[ |
|
uploaded_file, |
|
decode_method_radio, |
|
beam_size_slider, |
|
max_symbols_per_step_slider, |
|
], |
|
outputs=[uploaded_output, uploaded_html_info], |
|
) |
|
|
|
record_button.click( |
|
process_microphone, |
|
inputs=[ |
|
microphone, |
|
decode_method_radio, |
|
beam_size_slider, |
|
max_symbols_per_step_slider, |
|
], |
|
outputs=[recorded_output, recorded_html_info], |
|
) |
|
|
|
url_button.click( |
|
process_url, |
|
inputs=[ |
|
url_textbox, |
|
decode_method_radio, |
|
beam_size_slider, |
|
max_symbols_per_step_slider, |
|
], |
|
outputs=[url_output, url_html_info], |
|
) |
|
gr.Markdown(description) |
|
|
|
|
|
if __name__ == "__main__": |
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" |
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO) |
|
|
|
demo.launch() |
|
|