File size: 20,586 Bytes
8a3fb2e
e66133f
 
d533c9c
c17b696
e66133f
d533c9c
8a3fb2e
c17b696
8a3fb2e
c17b696
 
 
 
 
e66133f
 
 
43ebb3b
c17b696
 
 
 
e66133f
c17b696
 
f30235e
c17b696
96e542f
e66133f
c17b696
e66133f
43ebb3b
 
 
 
 
 
 
c17b696
 
e66133f
43ebb3b
e66133f
43ebb3b
fdc373f
43ebb3b
e66133f
c17b696
 
e66133f
c17b696
fdc373f
f30235e
fdc373f
 
 
43ebb3b
d68360d
 
2561128
e66133f
 
f34a81b
 
 
 
 
43ebb3b
f34a81b
 
 
 
 
 
 
e66133f
 
 
 
 
 
 
43ebb3b
e66133f
ea68dfd
 
43ebb3b
fdc373f
f34a81b
e66133f
 
 
 
 
 
2561128
f30235e
2561128
 
 
 
 
 
 
fdc373f
 
f34a81b
d68360d
 
2561128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3fb2e
f30235e
 
 
 
 
 
 
 
 
8a3fb2e
f30235e
 
 
 
 
 
 
 
 
 
8a3fb2e
f30235e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2561128
f30235e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2561128
f30235e
2561128
59e49d0
 
 
 
f30235e
59e49d0
f30235e
59e49d0
 
d68360d
 
 
 
59e49d0
 
 
 
 
 
f30235e
59e49d0
 
 
2561128
 
 
 
 
 
 
 
43ebb3b
2561128
 
fdc373f
 
f34a81b
d68360d
 
 
 
 
2561128
 
 
f30235e
 
 
 
2561128
f30235e
 
 
 
 
 
 
 
2561128
 
f30235e
2561128
 
59e49d0
62617b3
fdc373f
43ebb3b
08ddd40
d68360d
 
f30235e
f34a81b
 
d68360d
 
 
 
f34a81b
43ebb3b
ea68dfd
e66133f
f30235e
 
d68360d
 
 
 
 
 
f30235e
d68360d
 
 
2561128
21c77d0
e66133f
d68360d
ea68dfd
f30235e
 
 
21c77d0
 
d68360d
e66133f
d68360d
 
fdc373f
 
 
d68360d
 
fdc373f
 
d68360d
 
ea68dfd
 
 
d68360d
ea68dfd
59e49d0
ea68dfd
f30235e
21c77d0
 
d68360d
21c77d0
e66133f
 
2561128
 
d68360d
 
 
 
21c77d0
f30235e
d68360d
f30235e
d68360d
 
21c77d0
f34a81b
43ebb3b
f34a81b
 
 
f30235e
 
f34a81b
 
f30235e
f34a81b
 
 
 
43ebb3b
d68360d
 
 
 
f34a81b
 
d68360d
 
f34a81b
d68360d
 
 
 
 
f34a81b
d68360d
 
 
 
f34a81b
 
 
 
d68360d
f34a81b
 
 
f30235e
 
 
f34a81b
 
f30235e
f34a81b
 
d68360d
 
f34a81b
d533c9c
6456a7f
f30235e
b7f49a5
6456a7f
 
 
 
 
 
 
f30235e
 
6456a7f
 
8a3fb2e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from typing import Iterable, Tuple

import torch
import numpy as np
from PIL import Image
from tqdm.auto import tqdm
from librosa.beat import beat_track
from diffusers import AudioDiffusionPipeline

VERSION = "1.3.2"


class AudioDiffusion:

    def __init__(self,
                 model_id: str = "teticio/audio-diffusion-256",
                 cuda: bool = torch.cuda.is_available(),
                 progress_bar: Iterable = tqdm):
        """Class for generating audio using De-noising Diffusion Probabilistic Models.

        Args:
            model_id (String): name of model (local directory or Hugging Face Hub)
            cuda (bool): use CUDA?
            progress_bar (iterable): iterable callback for progress updates or None
        """
        self.model_id = model_id
        self.pipe = AudioDiffusionPipeline.from_pretrained(self.model_id)
        if cuda:
            self.pipe.to("cuda")
        self.progress_bar = progress_bar or (lambda _: _)

    def generate_spectrogram_and_audio(
        self,
        steps: int = None,
        generator: torch.Generator = None,
        step_generator: torch.Generator = None,
        eta: float = 0,
        noise: torch.Tensor = None
    ) -> Tuple[Image.Image, Tuple[int, np.ndarray]]:
        """Generate random mel spectrogram and convert to audio.

        Args:
            steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM)
            generator (torch.Generator): random number generator or None
            step_generator (torch.Generator): random number generator used to de-noise or None
            eta (float): parameter between 0 and 1 used with DDIM scheduler
            noise (torch.Tensor): noisy image or None

        Returns:
            PIL Image: mel spectrogram
            (float, np.ndarray): sample rate and raw audio
        """
        images, (sample_rate,
                 audios) = self.pipe(batch_size=1,
                                     steps=steps,
                                     generator=generator,
                                     step_generator=step_generator,
                                     eta=eta,
                                     noise=noise,
                                     return_dict=False)
        return images[0], (sample_rate, audios[0])

    def generate_spectrogram_and_audio_from_audio(
        self,
        audio_file: str = None,
        raw_audio: np.ndarray = None,
        slice: int = 0,
        start_step: int = 0,
        steps: int = None,
        generator: torch.Generator = None,
        mask_start_secs: float = 0,
        mask_end_secs: float = 0,
        step_generator: torch.Generator = None,
        eta: float = 0,
        noise: torch.Tensor = None
    ) -> Tuple[Image.Image, Tuple[int, np.ndarray]]:
        """Generate random mel spectrogram from audio input and convert to audio.

        Args:
            audio_file (str): must be a file on disk due to Librosa limitation or
            raw_audio (np.ndarray): audio as numpy array
            slice (int): slice number of audio to convert
            start_step (int): step to start from
            steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM)
            generator (torch.Generator): random number generator or None
            mask_start_secs (float): number of seconds of audio to mask (not generate) at start
            mask_end_secs (float): number of seconds of audio to mask (not generate) at end
            step_generator (torch.Generator): random number generator used to de-noise or None
            eta (float): parameter between 0 and 1 used with DDIM scheduler
            noise (torch.Tensor): noisy image or None

        Returns:
            PIL Image: mel spectrogram
            (float, np.ndarray): sample rate and raw audio
        """

        images, (sample_rate,
                 audios) = self.pipe(batch_size=1,
                                     audio_file=audio_file,
                                     raw_audio=raw_audio,
                                     slice=slice,
                                     start_step=start_step,
                                     steps=steps,
                                     generator=generator,
                                     mask_start_secs=mask_start_secs,
                                     mask_end_secs=mask_end_secs,
                                     step_generator=step_generator,
                                     eta=eta,
                                     noise=noise,
                                     return_dict=False)
        return images[0], (sample_rate, audios[0])

    @staticmethod
    def loop_it(audio: np.ndarray,
                sample_rate: int,
                loops: int = 12) -> np.ndarray:
        """Loop audio

        Args:
            audio (np.ndarray): audio as numpy array
            sample_rate (int): sample rate of audio
            loops (int): number of times to loop

        Returns:
            (float, np.ndarray): sample rate and raw audio or None
        """
        _, beats = beat_track(y=audio, sr=sample_rate, units='samples')
        for beats_in_bar in [16, 12, 8, 4]:
            if len(beats) > beats_in_bar:
                return np.tile(audio[beats[0]:beats[beats_in_bar]], loops)
        return None


'''
# This code will be migrated to diffusers shortly

#-----------------------------------------------------------------------------#

import os
import warnings
from typing import Any, Dict, Optional, Union

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin


warnings.filterwarnings("ignore")

import numpy as np  # noqa: E402

import librosa  # noqa: E402
from PIL import Image  # noqa: E402


class Mel(ConfigMixin, SchedulerMixin):
    """
    Parameters:
        x_res (`int`): x resolution of spectrogram (time)
        y_res (`int`): y resolution of spectrogram (frequency bins)
        sample_rate (`int`): sample rate of audio
        n_fft (`int`): number of Fast Fourier Transforms
        hop_length (`int`): hop length (a higher number is recommended for lower than 256 y_res)
        top_db (`int`): loudest in decibels
        n_iter (`int`): number of iterations for Griffin Linn mel inversion
    """

    config_name = "mel_config.json"

    @register_to_config
    def __init__(
        self,
        x_res: int = 256,
        y_res: int = 256,
        sample_rate: int = 22050,
        n_fft: int = 2048,
        hop_length: int = 512,
        top_db: int = 80,
        n_iter: int = 32,
    ):
        self.hop_length = hop_length
        self.sr = sample_rate
        self.n_fft = n_fft
        self.top_db = top_db
        self.n_iter = n_iter
        self.set_resolution(x_res, y_res)
        self.audio = None

    def set_resolution(self, x_res: int, y_res: int):
        """Set resolution.

        Args:
            x_res (`int`): x resolution of spectrogram (time)
            y_res (`int`): y resolution of spectrogram (frequency bins)
        """
        self.x_res = x_res
        self.y_res = y_res
        self.n_mels = self.y_res
        self.slice_size = self.x_res * self.hop_length - 1

    def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None):
        """Load audio.

        Args:
            audio_file (`str`): must be a file on disk due to Librosa limitation or
            raw_audio (`np.ndarray`): audio as numpy array
        """
        if audio_file is not None:
            self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr)
        else:
            self.audio = raw_audio

        # Pad with silence if necessary.
        if len(self.audio) < self.x_res * self.hop_length:
            self.audio = np.concatenate([self.audio, np.zeros((self.x_res * self.hop_length - len(self.audio),))])

    def get_number_of_slices(self) -> int:
        """Get number of slices in audio.

        Returns:
            `int`: number of spectograms audio can be sliced into
        """
        return len(self.audio) // self.slice_size

    def get_audio_slice(self, slice: int = 0) -> np.ndarray:
        """Get slice of audio.

        Args:
            slice (`int`): slice number of audio (out of get_number_of_slices())

        Returns:
            `np.ndarray`: audio as numpy array
        """
        return self.audio[self.slice_size * slice : self.slice_size * (slice + 1)]

    def get_sample_rate(self) -> int:
        """Get sample rate:

        Returns:
            `int`: sample rate of audio
        """
        return self.sr

    def audio_slice_to_image(self, slice: int) -> Image.Image:
        """Convert slice of audio to spectrogram.

        Args:
            slice (`int`): slice number of audio to convert (out of get_number_of_slices())

        Returns:
            `PIL Image`: grayscale image of x_res x y_res
        """
        S = librosa.feature.melspectrogram(
            y=self.get_audio_slice(slice), sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels
        )
        log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db)
        bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5).astype(np.uint8)
        image = Image.fromarray(bytedata)
        return image

    def image_to_audio(self, image: Image.Image) -> np.ndarray:
        """Converts spectrogram to audio.

        Args:
            image (`PIL Image`): x_res x y_res grayscale image

        Returns:
            audio (`np.ndarray`): raw audio
        """
        bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape((image.height, image.width))
        log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db
        S = librosa.db_to_power(log_S)
        audio = librosa.feature.inverse.mel_to_audio(
            S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_iter=self.n_iter
        )
        return audio

#-----------------------------------------------------------------------------#

from math import acos, sin
from typing import List, Tuple, Union

import numpy as np
import torch

from PIL import Image

from diffusers import AutoencoderKL, UNet2DConditionModel, DiffusionPipeline, DDIMScheduler, DDPMScheduler
from diffusers.pipeline_utils import AudioPipelineOutput, BaseOutput, ImagePipelineOutput


class AudioDiffusionPipeline(DiffusionPipeline):
    """
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        vqae ([`AutoencoderKL`]): Variational AutoEncoder for Latent Audio Diffusion or None
        unet ([`UNet2DConditionModel`]): UNET model
        mel ([`Mel`]): transform audio <-> spectrogram
        scheduler ([`DDIMScheduler` or `DDPMScheduler`]): de-noising scheduler
    """

    _optional_components = ["vqvae"]

    def __init__(
        self,
        vqvae: AutoencoderKL,
        unet: UNet2DConditionModel,
        mel: Mel,
        scheduler: Union[DDIMScheduler, DDPMScheduler],
    ):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler, mel=mel, vqvae=vqvae)

    def get_input_dims(self) -> Tuple:
        """Returns dimension of input image

        Returns:
            `Tuple`: (height, width)
        """
        input_module = self.vqvae if self.vqvae is not None else self.unet
        # For backwards compatibility
        sample_size = (
            (input_module.sample_size, input_module.sample_size)
            if type(input_module.sample_size) == int
            else input_module.sample_size
        )
        return sample_size

    def get_default_steps(self) -> int:
        """Returns default number of steps recommended for inference

        Returns:
            `int`: number of steps
        """
        return 50 if isinstance(self.scheduler, DDIMScheduler) else 1000

    @torch.no_grad()
    def __call__(
        self,
        batch_size: int = 1,
        audio_file: str = None,
        raw_audio: np.ndarray = None,
        slice: int = 0,
        start_step: int = 0,
        steps: int = None,
        generator: torch.Generator = None,
        mask_start_secs: float = 0,
        mask_end_secs: float = 0,
        step_generator: torch.Generator = None,
        eta: float = 0,
        noise: torch.Tensor = None,
        return_dict=True,
    ) -> Union[
        Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]]
    ]:
        """Generate random mel spectrogram from audio input and convert to audio.

        Args:
            batch_size (`int`): number of samples to generate
            audio_file (`str`): must be a file on disk due to Librosa limitation or
            raw_audio (`np.ndarray`): audio as numpy array
            slice (`int`): slice number of audio to convert
            start_step (int): step to start from
            steps (`int`): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM)
            generator (`torch.Generator`): random number generator or None
            mask_start_secs (`float`): number of seconds of audio to mask (not generate) at start
            mask_end_secs (`float`): number of seconds of audio to mask (not generate) at end
            step_generator (`torch.Generator`): random number generator used to de-noise or None
            eta (`float`): parameter between 0 and 1 used with DDIM scheduler
            noise (`torch.Tensor`): noise tensor of shape (batch_size, 1, height, width) or None
            return_dict (`bool`): if True return AudioPipelineOutput, ImagePipelineOutput else Tuple

        Returns:
            `List[PIL Image]`: mel spectrograms (`float`, `List[np.ndarray]`): sample rate and raw audios
        """

        steps = steps or self.get_default_steps()
        self.scheduler.set_timesteps(steps)
        step_generator = step_generator or generator
        # For backwards compatibility
        if type(self.unet.sample_size) == int:
            self.unet.sample_size = (self.unet.sample_size, self.unet.sample_size)
        input_dims = self.get_input_dims()
        self.mel.set_resolution(x_res=input_dims[1], y_res=input_dims[0])
        if noise is None:
            noise = torch.randn(
                (batch_size, self.unet.in_channels, self.unet.sample_size[0], self.unet.sample_size[1]),
                generator=generator,
                device=self.device,
            )
        images = noise
        mask = None

        if audio_file is not None or raw_audio is not None:
            self.mel.load_audio(audio_file, raw_audio)
            input_image = self.mel.audio_slice_to_image(slice)
            input_image = np.frombuffer(input_image.tobytes(), dtype="uint8").reshape(
                (input_image.height, input_image.width)
            )
            input_image = (input_image / 255) * 2 - 1
            input_images = torch.tensor(input_image[np.newaxis, :, :], dtype=torch.float).to(self.device)

            if self.vqvae is not None:
                input_images = self.vqvae.encode(torch.unsqueeze(input_images, 0)).latent_dist.sample(
                    generator=generator
                )[0]
                input_images = 0.18215 * input_images

            if start_step > 0:
                images[0, 0] = self.scheduler.add_noise(input_images, noise, self.scheduler.timesteps[start_step - 1])

            pixels_per_second = (
                self.unet.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
            )
            mask_start = int(mask_start_secs * pixels_per_second)
            mask_end = int(mask_end_secs * pixels_per_second)
            mask = self.scheduler.add_noise(input_images, noise, torch.tensor(self.scheduler.timesteps[start_step:]))

        for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])):
            model_output = self.unet(images, t)["sample"]

            if isinstance(self.scheduler, DDIMScheduler):
                images = self.scheduler.step(
                    model_output=model_output, timestep=t, sample=images, eta=eta, generator=step_generator
                )["prev_sample"]
            else:
                images = self.scheduler.step(
                    model_output=model_output, timestep=t, sample=images, generator=step_generator
                )["prev_sample"]

            if mask is not None:
                if mask_start > 0:
                    images[:, :, :, :mask_start] = mask[:, step, :, :mask_start]
                if mask_end > 0:
                    images[:, :, :, -mask_end:] = mask[:, step, :, -mask_end:]

        if self.vqvae is not None:
            # 0.18215 was scaling factor used in training to ensure unit variance
            images = 1 / 0.18215 * images
            images = self.vqvae.decode(images)["sample"]

        images = (images / 2 + 0.5).clamp(0, 1)
        images = images.cpu().permute(0, 2, 3, 1).numpy()
        images = (images * 255).round().astype("uint8")
        images = list(
            map(lambda _: Image.fromarray(_[:, :, 0]), images)
            if images.shape[3] == 1
            else map(lambda _: Image.fromarray(_, mode="RGB").convert("L"), images)
        )

        audios = list(map(lambda _: self.mel.image_to_audio(_), images))
        if not return_dict:
            return images, (self.mel.get_sample_rate(), audios)

        return BaseOutput(**AudioPipelineOutput(np.array(audios)[:, np.newaxis, :]), **ImagePipelineOutput(images))

    @torch.no_grad()
    def encode(self, images: List[Image.Image], steps: int = 50) -> np.ndarray:
        """Reverse step process: recover noisy image from generated image.

        Args:
            images (`List[PIL Image]`): list of images to encode
            steps (`int`): number of encoding steps to perform (defaults to 50)

        Returns:
            `np.ndarray`: noise tensor of shape (batch_size, 1, height, width)
        """

        # Only works with DDIM as this method is deterministic
        assert isinstance(self.scheduler, DDIMScheduler)
        self.scheduler.set_timesteps(steps)
        sample = np.array(
            [np.frombuffer(image.tobytes(), dtype="uint8").reshape((1, image.height, image.width)) for image in images]
        )
        sample = (sample / 255) * 2 - 1
        sample = torch.Tensor(sample).to(self.device)

        for t in self.progress_bar(torch.flip(self.scheduler.timesteps, (0,))):
            prev_timestep = t - self.scheduler.num_train_timesteps // self.scheduler.num_inference_steps
            alpha_prod_t = self.scheduler.alphas_cumprod[t]
            alpha_prod_t_prev = (
                self.scheduler.alphas_cumprod[prev_timestep]
                if prev_timestep >= 0
                else self.scheduler.final_alpha_cumprod
            )
            beta_prod_t = 1 - alpha_prod_t
            model_output = self.unet(sample, t)["sample"]
            pred_sample_direction = (1 - alpha_prod_t_prev) ** (0.5) * model_output
            sample = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
            sample = sample * alpha_prod_t ** (0.5) + beta_prod_t ** (0.5) * model_output

        return sample

    @staticmethod
    def slerp(x0: torch.Tensor, x1: torch.Tensor, alpha: float) -> torch.Tensor:
        """Spherical Linear intERPolation

        Args:
            x0 (`torch.Tensor`): first tensor to interpolate between
            x1 (`torch.Tensor`): seconds tensor to interpolate between
            alpha (`float`): interpolation between 0 and 1

        Returns:
            `torch.Tensor`: interpolated tensor
        """

        theta = acos(torch.dot(torch.flatten(x0), torch.flatten(x1)) / torch.norm(x0) / torch.norm(x1))
        return sin((1 - alpha) * theta) * x0 / sin(theta) + sin(alpha * theta) * x1 / sin(theta)


import sys
import diffusers

class audio_diffusion():
    __name__ = 'audio_diffusion'
    pass


sys.modules['audio_diffusion'] = audio_diffusion
setattr(audio_diffusion, Mel.__name__, Mel)
diffusers.AudioDiffusionPipeline = AudioDiffusionPipeline
setattr(diffusers, AudioDiffusionPipeline.__name__, AudioDiffusionPipeline)
diffusers.pipeline_utils.LOADABLE_CLASSES['audio_diffusion'] = {}
diffusers.pipeline_utils.LOADABLE_CLASSES['audio_diffusion']['Mel'] = ["save_pretrained", "from_pretrained"]
'''