Spaces:
Runtime error
Runtime error
File size: 2,881 Bytes
9c0c5c8 1dea888 f30bb70 9c0c5c8 f30bb70 1dea888 9c0c5c8 1dea888 9c0c5c8 c17b696 9c0c5c8 f30bb70 9c0c5c8 c17b696 9c0c5c8 c17b696 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 c17b696 f30bb70 1dea888 c17b696 9c0c5c8 f30bb70 1dea888 c17b696 1dea888 e97d748 9c0c5c8 1dea888 c17b696 9c0c5c8 1dea888 e97d748 9c0c5c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import os
import re
import io
import logging
import argparse
import numpy as np
import pandas as pd
from tqdm.auto import tqdm
from datasets import Dataset, DatasetDict, Features, Image, Value
from audiodiffusion.mel import Mel
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger('audio_to_images')
def main(args):
mel = Mel(x_res=args.resolution,
y_res=args.resolution,
hop_length=args.hop_length)
os.makedirs(args.output_dir, exist_ok=True)
audio_files = [
os.path.join(root, file) for root, _, files in os.walk(args.input_dir)
for file in files if re.search("\.(mp3|wav|m4a)$", file, re.IGNORECASE)
]
examples = []
try:
for audio_file in tqdm(audio_files):
try:
mel.load_audio(audio_file)
except KeyboardInterrupt:
raise
except:
continue
for slice in range(mel.get_number_of_slices()):
image = mel.audio_slice_to_image(slice)
assert (image.width == args.resolution
and image.height == args.resolution)
# skip completely silent slices
if all(np.frombuffer(image.tobytes(), dtype=np.uint8) == 255):
logger.warn('File %s slice %d is completely silent',
audio_file, slice)
continue
with io.BytesIO() as output:
image.save(output, format="PNG")
bytes = output.getvalue()
examples.extend([{
"image": {
"bytes": bytes
},
"audio_file": audio_file,
"slice": slice,
}])
finally:
if len(examples) == 0:
logger.warn('No valid audio files were found.')
return
ds = Dataset.from_pandas(
pd.DataFrame(examples),
features=Features({
"image": Image(),
"audio_file": Value(dtype="string"),
"slice": Value(dtype="int16"),
}),
)
dsd = DatasetDict({"train": ds})
dsd.save_to_disk(os.path.join(args.output_dir))
if args.push_to_hub:
dsd.push_to_hub(args.push_to_hub)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=
"Create dataset of Mel spectrograms from directory of audio files.")
parser.add_argument("--input_dir", type=str)
parser.add_argument("--output_dir", type=str, default="data")
parser.add_argument("--resolution", type=int, default=256)
parser.add_argument("--hop_length", type=int, default=512)
parser.add_argument("--push_to_hub", type=str, default=None)
args = parser.parse_args()
main(args)
|