Spaces:
Runtime error
Runtime error
File size: 11,303 Bytes
825c8bf 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 825c8bf 9c0c5c8 6dff871 9c0c5c8 e97d748 1dea888 9c0c5c8 1dea888 9c0c5c8 6dff871 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 1dea888 825c8bf 1dea888 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 e97d748 6dff871 1dea888 e97d748 1dea888 9c0c5c8 1dea888 9c0c5c8 825c8bf 9c0c5c8 1dea888 9c0c5c8 65fa65c 9c0c5c8 65fa65c 9c0c5c8 65fa65c 9c0c5c8 65fa65c 9c0c5c8 1dea888 9c0c5c8 1dea888 9c0c5c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# based on https://github.com/huggingface/diffusers/blob/main/examples/train_unconditional.py
import argparse
import os
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import load_from_disk, load_dataset
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from torchvision.transforms import (
CenterCrop,
Compose,
InterpolationMode,
Normalize,
RandomHorizontalFlip,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
from mel import Mel
logger = get_logger(__name__)
def main(args):
output_dir = os.environ.get("SM_MODEL_DIR", None) or args.output_dir
logging_dir = os.path.join(output_dir, args.logging_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
model = UNet2DModel(
sample_size=args.resolution,
in_channels=1,
out_channels=1,
layers_per_block=2,
block_out_channels=(128, 128, 256, 256, 512, 512),
down_block_types=(
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D",
),
up_block_types=(
"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, tensor_format="pt")
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
augmentations = Compose(
[
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
CenterCrop(args.resolution),
RandomHorizontalFlip(),
ToTensor(),
Normalize([0.5], [0.5]),
]
)
if args.dataset_name is not None:
if os.path.exists(args.dataset_name):
dataset = load_from_disk(args.dataset_name, args.dataset_config_name)[
"train"
]
else:
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
use_auth_token=True if args.use_auth_token else None,
split="train",
)
else:
dataset = load_dataset(
"imagefolder",
data_dir=args.train_data_dir,
cache_dir=args.cache_dir,
split="train",
)
def transforms(examples):
images = [augmentations(image) for image in examples["image"]]
return {"input": images}
dataset.set_transform(transforms)
train_dataloader = torch.utils.data.DataLoader(
dataset, batch_size=args.train_batch_size, shuffle=True
)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * args.num_epochs)
// args.gradient_accumulation_steps,
)
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
ema_model = EMAModel(
getattr(model, "module", model),
inv_gamma=args.ema_inv_gamma,
power=args.ema_power,
max_value=args.ema_max_decay,
)
if args.push_to_hub:
repo = init_git_repo(args, at_init=True)
if accelerator.is_main_process:
run = os.path.split(__file__)[-1].split(".")[0]
accelerator.init_trackers(run)
mel = Mel(x_res=args.resolution, y_res=args.resolution, hop_length=args.hop_length)
global_step = 0
for epoch in range(args.num_epochs):
model.train()
progress_bar = tqdm(
total=len(train_dataloader), disable=not accelerator.is_local_main_process
)
progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["input"]
# Sample noise that we'll add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bsz = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.num_train_timesteps,
(bsz,),
device=clean_images.device,
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps)["sample"]
loss = F.mse_loss(noise_pred, noise)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
if args.use_ema:
ema_model.step(model)
optimizer.zero_grad()
progress_bar.update(1)
logs = {
"loss": loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0],
"step": global_step,
}
if args.use_ema:
logs["ema_decay"] = ema_model.decay
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
global_step += 1
progress_bar.close()
accelerator.wait_for_everyone()
# Generate sample images for visual inspection
if accelerator.is_main_process:
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
pipeline = DDPMPipeline(
unet=accelerator.unwrap_model(
ema_model.averaged_model if args.use_ema else model
),
scheduler=noise_scheduler,
)
generator = torch.manual_seed(0)
# run pipeline in inference (sample random noise and denoise)
images = pipeline(
generator=generator,
batch_size=args.eval_batch_size,
output_type="numpy",
)["sample"]
# denormalize the images and save to tensorboard
images_processed = (
(images * 255).round().astype("uint8").transpose(0, 3, 1, 2)
)
accelerator.trackers[0].writer.add_images(
"test_samples", images_processed, epoch
)
for _, image in enumerate(images_processed):
audio = mel.image_to_audio(Image.fromarray(image[0]))
accelerator.trackers[0].writer.add_audio(
f"test_audio_{_}",
audio,
epoch,
sample_rate=mel.get_sample_rate(),
)
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
# save the model
if args.push_to_hub:
push_to_hub(
args,
pipeline,
repo,
commit_message=f"Epoch {epoch}",
blocking=False,
)
else:
pipeline.save_pretrained(output_dir)
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--dataset_name", type=str, default=None)
parser.add_argument("--dataset_config_name", type=str, default=None)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help="A folder containing the training data.",
)
parser.add_argument("--output_dir", type=str, default="ddpm-model-64")
parser.add_argument("--overwrite_output_dir", type=bool, default=False)
parser.add_argument("--cache_dir", type=str, default=None)
parser.add_argument("--resolution", type=int, default=64)
parser.add_argument("--train_batch_size", type=int, default=16)
parser.add_argument("--eval_batch_size", type=int, default=16)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--save_images_epochs", type=int, default=10)
parser.add_argument("--save_model_epochs", type=int, default=10)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--lr_scheduler", type=str, default="cosine")
parser.add_argument("--lr_warmup_steps", type=int, default=500)
parser.add_argument("--adam_beta1", type=float, default=0.95)
parser.add_argument("--adam_beta2", type=float, default=0.999)
parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
parser.add_argument("--use_ema", type=bool, default=True)
parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
parser.add_argument("--ema_power", type=float, default=3 / 4)
parser.add_argument("--ema_max_decay", type=float, default=0.9999)
parser.add_argument("--push_to_hub", type=bool, default=False)
parser.add_argument("--use_auth_token", type=bool, default=False)
parser.add_argument("--hub_token", type=str, default=None)
parser.add_argument("--hub_model_id", type=str, default=None)
parser.add_argument("--hub_private_repo", type=bool, default=False)
parser.add_argument("--logging_dir", type=str, default="logs")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--hop_length", type=int, default=512)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.dataset_name is None and args.train_data_dir is None:
raise ValueError(
"You must specify either a dataset name from the hub or a train data directory."
)
main(args)
|