Spaces:
Runtime error
Runtime error
File size: 3,678 Bytes
71df811 05be1df 71df811 4b16ff2 825c8bf 72c877e 825c8bf d2147ef dbe37b6 825c8bf 7c89b23 825c8bf 1dea888 825c8bf 65fa65c 825c8bf 7c89b23 825c8bf 65fa65c 1dea888 65fa65c 825c8bf 7c89b23 825c8bf d73aa64 825c8bf 633cada 825c8bf d73aa64 0a4662e d73aa64 1dea888 825c8bf 7c89b23 825c8bf 1dea888 825c8bf 65fa65c 1dea888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
title: Audio Diffusion
emoji: 🎵
colorFrom: pink
colorTo: blue
sdk: gradio
sdk_version: 3.1.4
app_file: app.py
pinned: false
license: gpl-3.0
---
# audio-diffusion
### Apply [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) using the new Hugging Face [diffusers](https://github.com/huggingface/diffusers) package to synthesize music instead of images.
---
![mel spectrogram](mel.png)
Audio can be represented as images by transforming to a [mel spectrogram](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum), such as the one shown above. The class `Mel` in `mel.py` can convert a slice of audio into a mel spectrogram of `x_res` x `y_res` and vice versa. The higher the resolution, the less audio information will be lost. You can see how this works in the `test-mel.ipynb` notebook.
A DDPM model is trained on a set of mel spectrograms that have been generated from a directory of audio files. It is then used to synthesize similar mel spectrograms, which are then converted back into audio. See the `test-model.ipynb` notebook for an example.
You can play around with the model I trained on about 500 songs from my Spotify "liked" playlist on [Google Colab](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test-model.ipynb) or [Hugging Face spaces](https://huggingface.co/spaces/teticio/audio-diffusion). Check out some samples I generated [here](https://soundcloud.com/teticio2/sets/audio-diffusion).
## Generate Mel spectrogram dataset from directory of audio files
#### Training can be run with Mel spectrograms of resolution 64x64 on a single commercial grade GPU (e.g. RTX 2080 Ti). The `hop_length` should be set to 1024 for better results.
```bash
python src/audio_to_images.py \
--resolution 64 \
--hop_length 1024\
--input_dir path-to-audio-files \
--output_dir data-test
```
#### Generate dataset of 256x256 Mel spectrograms and push to hub (you will need to be authenticated with `huggingface-cli login`).
```bash
python src/audio_to_images.py \
--resolution 256 \
--input_dir path-to-audio-files \
--output_dir data-256 \
--push_to_hub teticio\audio-diffusion-256
```
## Train model
#### Run training on local machine.
```bash
accelerate launch --config_file accelerate_local.yaml \
src/train_unconditional.py \
--dataset_name data-64 \
--resolution 64 \
--hop_length 1024 \
--output_dir ddpm-ema-audio-64 \
--train_batch_size 16 \
--num_epochs 100 \
--gradient_accumulation_steps 1 \
--learning_rate 1e-4 \
--lr_warmup_steps 500 \
--mixed_precision no
```
#### Run training on local machine with `batch_size` of 2 and `gradient_accumulation_steps` 8 to compensate, so that 256x256 resolution model fits on commercial grade GPU and push to hub.
```bash
accelerate launch --config_file accelerate_local.yaml \
src/train_unconditional.py \
--dataset_name teticio/audio-diffusion-256 \
--resolution 256 \
--output_dir ddpm-ema-audio-256 \
--num_epochs 100 \
--train_batch_size 2 \
--eval_batch_size 2 \
--gradient_accumulation_steps 8 \
--learning_rate 1e-4 \
--lr_warmup_steps 500 \
--mixed_precision no \
--push_to_hub True \
--hub_model_id audio-diffusion-256 \
--hub_token $(cat $HOME/.huggingface/token)
```
#### Run training on SageMaker.
```bash
accelerate launch --config_file accelerate_sagemaker.yaml \
src/train_unconditional.py \
--dataset_name teticio/audio-diffusion-256 \
--resolution 256 \
--output_dir ddpm-ema-audio-256 \
--train_batch_size 16 \
--num_epochs 100 \
--gradient_accumulation_steps 1 \
--learning_rate 1e-4 \
--lr_warmup_steps 500 \
--mixed_precision no
```
|