File size: 4,299 Bytes
71df811
 
05be1df
71df811
 
 
 
 
 
 
 
02a7301
825c8bf
 
 
 
 
aedf71e
869c0ac
 
 
825c8bf
 
869c0ac
 
 
825c8bf
aedf71e
869c0ac
aedf71e
869c0ac
 
dbe37b6
825c8bf
7c89b23
825c8bf
1dea888
3526755
825c8bf
869c0ac
825c8bf
 
65fa65c
825c8bf
7c89b23
825c8bf
65fa65c
3526755
65fa65c
 
825c8bf
760dafb
825c8bf
 
7c89b23
825c8bf
 
 
3526755
825c8bf
 
 
 
 
 
 
 
 
 
 
 
d73aa64
825c8bf
 
 
3526755
825c8bf
 
 
 
633cada
 
 
825c8bf
 
d73aa64
 
0a4662e
d73aa64
1dea888
825c8bf
7c89b23
825c8bf
1dea888
825c8bf
3526755
825c8bf
65fa65c
 
 
 
 
 
 
 
1dea888
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
title: Audio Diffusion
emoji: 🎵
colorFrom: pink
colorTo: blue
sdk: gradio
sdk_version: 3.1.4
app_file: app.py
pinned: false
license: gpl-3.0
---
# audio-diffusion [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/gradio_app.ipynb)

### Apply [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) using the new Hugging Face [diffusers](https://github.com/huggingface/diffusers) package to synthesize music instead of images.

---

**UPDATE**: I've trained a new [model](https://huggingface.co/teticio/audio-diffusion-breaks-256) on 30,000 samples that have been used in music, sourced from [WhoSampled](https://whosampled.com) and [YouTube](https://youtube.com). The idea is that the model could be used to generate loops or "breaks" that can be sampled to make new tracks. People ("crate diggers") go to a lot of lengths or are willing to pay a lot of money to find breaks in old records.

---

![mel spectrogram](mel.png)

---

Audio can be represented as images by transforming to a [mel spectrogram](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum), such as the one shown above. The class `Mel` in `mel.py` can convert a slice of audio into a mel spectrogram of `x_res` x `y_res` and vice versa. The higher the resolution, the less audio information will be lost. You can see how this works in the [`test_mel.ipynb`](https://github.com/teticio/audio-diffusion/blob/main/notebooks/test_mel.ipynb) notebook.

A DDPM model is trained on a set of mel spectrograms that have been generated from a directory of audio files. It is then used to synthesize similar mel spectrograms, which are then converted back into audio.

You can play around with the model on [Google Colab](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb) or [Hugging Face spaces](https://huggingface.co/spaces/teticio/audio-diffusion). Check out some automatically generated loops [here](https://soundcloud.com/teticio2/sets/audio-diffusion-loops).

---

## Generate Mel spectrogram dataset from directory of audio files
#### Training can be run with Mel spectrograms of resolution 64x64 on a single commercial grade GPU (e.g. RTX 2080 Ti). The `hop_length` should be set to 1024 for better results.

```bash
python audio_to_images.py \
  --resolution 64 \
  --hop_length 1024 \
  --input_dir path-to-audio-files \
  --output_dir data-test
```

#### Generate dataset of 256x256 Mel spectrograms and push to hub (you will need to be authenticated with `huggingface-cli login`).

```bash
python audio_to_images.py \
  --resolution 256 \
  --input_dir path-to-audio-files \
  --output_dir data-256 \
  --push_to_hub teticio/audio-diffusion-256
```
## Train model
#### Run training on local machine.

```bash
accelerate launch --config_file accelerate_local.yaml \
  train_unconditional.py \
  --dataset_name data-64 \
  --resolution 64 \
  --hop_length 1024 \
  --output_dir ddpm-ema-audio-64 \
  --train_batch_size 16 \
  --num_epochs 100 \
  --gradient_accumulation_steps 1 \
  --learning_rate 1e-4 \
  --lr_warmup_steps 500 \
  --mixed_precision no
```

#### Run training on local machine with `batch_size` of 2 and `gradient_accumulation_steps` 8 to compensate, so that 256x256 resolution model fits on commercial grade GPU and push to hub.

```bash
accelerate launch --config_file accelerate_local.yaml \
  train_unconditional.py \
  --dataset_name teticio/audio-diffusion-256 \
  --resolution 256 \
  --output_dir ddpm-ema-audio-256 \
  --num_epochs 100 \
  --train_batch_size 2 \
  --eval_batch_size 2 \
  --gradient_accumulation_steps 8 \
  --learning_rate 1e-4 \
  --lr_warmup_steps 500 \
  --mixed_precision no \
  --push_to_hub True \
  --hub_model_id audio-diffusion-256 \
  --hub_token $(cat $HOME/.huggingface/token)
```

#### Run training on SageMaker.

```bash
accelerate launch --config_file accelerate_sagemaker.yaml \
  strain_unconditional.py \
  --dataset_name teticio/audio-diffusion-256 \
  --resolution 256 \
  --output_dir ddpm-ema-audio-256 \
  --train_batch_size 16 \
  --num_epochs 100 \
  --gradient_accumulation_steps 1 \
  --learning_rate 1e-4 \
  --lr_warmup_steps 500 \
  --mixed_precision no
```