Spaces:
Runtime error
Runtime error
File size: 6,071 Bytes
f29faf1 37e9e00 f29faf1 37e9e00 f29faf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
{
"cells": [
{
"cell_type": "markdown",
"id": "5f6c6cc2",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/conditional_generation.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1935544",
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" # are we running on Google Colab?\n",
" import google.colab\n",
" !git clone -q https://github.com/teticio/audio-diffusion.git\n",
" %cd audio-diffusion\n",
" %pip install -q -r requirements.txt\n",
"except:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0e656c9",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"sys.path.insert(0, os.path.dirname(os.path.abspath(\"\")))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d448b299",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import urllib\n",
"import requests\n",
"from IPython.display import Audio\n",
"from audiodiffusion import AudioDiffusion\n",
"from audiodiffusion.audio_encoder import AudioEncoder"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1548971",
"metadata": {},
"outputs": [],
"source": [
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"generator = torch.Generator(device=device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "056f179c",
"metadata": {},
"outputs": [],
"source": [
"audio_diffusion = AudioDiffusion(model_id=\"teticio/conditional-latent-audio-diffusion-512\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b4a08500",
"metadata": {},
"outputs": [],
"source": [
"audio_encoder = AudioEncoder.from_pretrained(\"teticio/audio-encoder\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "387550ac",
"metadata": {},
"outputs": [],
"source": [
"# Uncomment for faster (but slightly lower quality) generation\n",
"#from diffusers import DDIMScheduler\n",
"#audio_diffusion.pipe.scheduler = DDIMScheduler()"
]
},
{
"cell_type": "markdown",
"id": "9936a72f",
"metadata": {},
"source": [
"## Download and encode preview track from Spotify"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "57a9b134",
"metadata": {},
"outputs": [],
"source": [
"# Get temporary API credentials\n",
"credentials = requests.get(\n",
" \"https://open.spotify.com/get_access_token?reason=transport&productType=embed\"\n",
").json()\n",
"headers = {\n",
" \"Accept\": \"application/json\",\n",
" \"Content-Type\": \"application/json\",\n",
" \"Authorization\": \"Bearer \" + credentials[\"accessToken\"]\n",
"}\n",
"\n",
"# Search for tracks\n",
"search_string = input(\"Search: \")\n",
"response = requests.get(\n",
" f\"https://api.spotify.com/v1/search?q={urllib.parse.quote(search_string)}&type=track\",\n",
" headers=headers).json()\n",
"\n",
"# List results\n",
"for _, track in enumerate(response[\"tracks\"][\"items\"]):\n",
" print(f\"{_ + 1}. {track['artists'][0]['name']} - {track['name']}\")\n",
"selection = input(\"Select a track: \")\n",
"\n",
"# Download and encode selection\n",
"r = requests.get(response[\"tracks\"][\"items\"][int(selection) -\n",
" 1][\"preview_url\"],\n",
" stream=True)\n",
"with open(\"temp.mp3\", \"wb\") as f:\n",
" for chunk in r:\n",
" f.write(chunk)\n",
"encoding = torch.unsqueeze(audio_encoder.encode([\"temp.mp3\"]),\n",
" axis=1).to(device)\n",
"os.remove(\"temp.mp3\")"
]
},
{
"cell_type": "markdown",
"id": "8af863f5",
"metadata": {},
"source": [
"## Conditional Generation\n",
"Bear in mind that the generative model can only generate music similar to that on which it was trained. The audio encoding will influence the generation within those limitations."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f119ddd",
"metadata": {},
"outputs": [],
"source": [
"for _ in range(10):\n",
" seed = generator.seed()\n",
" print(f'Seed = {seed}')\n",
" generator.manual_seed(seed)\n",
" image, (sample_rate,\n",
" audio) = audio_diffusion.generate_spectrogram_and_audio(\n",
" generator=generator, encoding=encoding)\n",
" display(image)\n",
" display(Audio(audio, rate=sample_rate))\n",
" loop = AudioDiffusion.loop_it(audio, sample_rate)\n",
" if loop is not None:\n",
" display(Audio(loop, rate=sample_rate))\n",
" else:\n",
" print(\"Unable to determine loop points\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d0bd18c0",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "huggingface",
"language": "python",
"name": "huggingface"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|