Spaces:
Runtime error
Runtime error
File size: 6,201 Bytes
3e8b723 8aa7c27 3e8b723 8aa7c27 3e8b723 8aa7c27 3e8b723 8aa7c27 3e8b723 d76bdef 3e8b723 d76bdef 8aa7c27 d76bdef 3e8b723 d76bdef 3e8b723 d76bdef 3e8b723 d76bdef 3e8b723 d76bdef 3e8b723 d76bdef 3e8b723 8aa7c27 d122744 8aa7c27 3e8b723 8aa7c27 001a426 d122744 8aa7c27 3e8b723 8aa7c27 3e8b723 8aa7c27 3e8b723 8aa7c27 f15cb42 8aa7c27 3e8b723 8aa7c27 3e8b723 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# pip install -e git+https://github.com/CompVis/stable-diffusion.git@master
# pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
# TODO
# grayscale
import os
import argparse
import torch
import torchvision
import numpy as np
from PIL import Image
import pytorch_lightning as pl
from omegaconf import OmegaConf
from librosa.util import normalize
from ldm.util import instantiate_from_config
from pytorch_lightning.trainer import Trainer
from torch.utils.data import DataLoader, Dataset
from datasets import load_from_disk, load_dataset
from pytorch_lightning.callbacks import Callback, ModelCheckpoint
from pytorch_lightning.utilities.distributed import rank_zero_only
from audiodiffusion.mel import Mel
from audiodiffusion.utils import convert_ldm_to_hf_vae
class AudioDiffusion(Dataset):
def __init__(self, model_id):
super().__init__()
if os.path.exists(model_id):
self.hf_dataset = load_from_disk(model_id)['train']
else:
self.hf_dataset = load_dataset(model_id)['train']
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
image = self.hf_dataset[idx]['image'].convert('RGB')
image = np.frombuffer(image.tobytes(), dtype="uint8").reshape(
(image.height, image.width, 3))
image = ((image / 255) * 2 - 1)
return {'image': image}
class AudioDiffusionDataModule(pl.LightningDataModule):
def __init__(self, model_id, batch_size):
super().__init__()
self.batch_size = batch_size
self.dataset = AudioDiffusion(model_id)
self.num_workers = 1
def train_dataloader(self):
return DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=self.num_workers)
class ImageLogger(Callback):
def __init__(self, every=1000, resolution=256, hop_length=512):
super().__init__()
self.mel = Mel(x_res=resolution,
y_res=resolution,
hop_length=hop_length)
self.every = every
@rank_zero_only
def log_images_and_audios(self, pl_module, batch):
pl_module.eval()
with torch.no_grad():
images = pl_module.log_images(batch, split='train')
pl_module.train()
for k in images:
images[k] = images[k].detach().cpu()
images[k] = torch.clamp(images[k], -1., 1.)
images[k] = (images[k] + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = torchvision.utils.make_grid(images[k])
tag = f"train/{k}"
pl_module.logger.experiment.add_image(
tag, grid, global_step=pl_module.global_step)
images[k] = (images[k].numpy() *
255).round().astype("uint8").transpose(0, 2, 3, 1)
for _, image in enumerate(images[k]):
audio = self.mel.image_to_audio(
Image.fromarray(image, mode='RGB').convert('L'))
pl_module.logger.experiment.add_audio(
tag + f"/{_}",
normalize(audio),
global_step=pl_module.global_step,
sample_rate=self.mel.get_sample_rate())
def on_train_batch_end(self, trainer, pl_module, outputs, batch,
batch_idx):
if (batch_idx + 1) % self.every != 0:
return
self.log_images_and_audios(pl_module, batch)
class HFModelCheckpoint(ModelCheckpoint):
def __init__(self, ldm_config, hf_checkpoint, *args, **kwargs):
super().__init__(*args, **kwargs)
self.ldm_config = ldm_config
self.hf_checkpoint = hf_checkpoint
def on_train_epoch_end(self, trainer, pl_module):
super().on_train_epoch_end(trainer, pl_module)
ldm_checkpoint = self.format_checkpoint_name(
{'epoch': trainer.current_epoch})
convert_ldm_to_hf_vae(ldm_checkpoint, self.ldm_config,
self.hf_checkpoint)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train VAE using ldm.")
parser.add_argument("-d", "--dataset_name", type=str, default=None)
parser.add_argument("-b", "--batch_size", type=int, default=1)
parser.add_argument("-c",
"--ldm_config_file",
type=str,
default="config/ldm_autoencoder_kl.yaml")
parser.add_argument("--ldm_checkpoint_dir",
type=str,
default="models/ldm-autoencoder-kl")
parser.add_argument("--hf_checkpoint_dir",
type=str,
default="models/autoencoder-kl")
parser.add_argument("-r",
"--resume_from_checkpoint",
type=str,
default=None)
parser.add_argument("-g",
"--gradient_accumulation_steps",
type=int,
default=1)
args = parser.parse_args()
config = OmegaConf.load(args.ldm_config_file)
lightning_config = config.pop("lightning", OmegaConf.create())
trainer_config = lightning_config.get("trainer", OmegaConf.create())
trainer_config.accumulate_grad_batches = args.gradient_accumulation_steps
trainer_opt = argparse.Namespace(**trainer_config)
trainer = Trainer.from_argparse_args(
trainer_opt,
resume_from_checkpoint=args.resume_from_checkpoint,
callbacks=[
ImageLogger(),
HFModelCheckpoint(ldm_config=config,
hf_checkpoint=args.hf_checkpoint_dir,
dirpath=args.ldm_checkpoint_dir,
filename='{epoch:06}',
verbose=True,
save_last=True)
])
model = instantiate_from_config(config.model)
model.learning_rate = config.model.base_learning_rate
data = AudioDiffusionDataModule(args.dataset_name,
batch_size=args.batch_size)
trainer.fit(model, data)
|