File size: 3,052 Bytes
1051b11
fbf5042
 
 
 
 
 
 
3496484
6b485fc
 
fbf5042
 
 
 
6b485fc
fbf5042
 
 
 
 
 
 
 
 
 
6b485fc
09c694e
fbf5042
 
 
 
924cd68
fbf5042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
924cd68
f1889e7
fbf5042
6b485fc
fbf5042
6b485fc
fbf5042
f1889e7
fbf5042
924cd68
 
 
6b485fc
924cd68
fbf5042
f1889e7
924cd68
fbf5042
924cd68
f1889e7
fbf5042
6b485fc
fbf5042
6b485fc
fbf5042
f1889e7
fbf5042
924cd68
 
 
6b485fc
924cd68
fbf5042
 
924cd68
 
 
 
 
 
 
3496484
924cd68
 
 
 
 
 
 
 
3496484
924cd68
 
 
 
 
 
1f643c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import base64
import re
import json
import pandas as pd
import gradio as gr
import pyterrier as pt
pt.init()
import pyt_splade
from pyterrier_gradio import Demo, MarkdownFile, interface, df2code, code2md, EX_Q, EX_D
factory_max = pyt_splade.Splade(agg='max')
factory_sum = pyt_splade.Splade(agg='sum')

COLAB_NAME = 'pyterrier_splade.ipynb'
COLAB_INSTALL = '''
!pip install -q git+https://github.com/naver/splade
!pip install -q git+https://github.com/cmacdonald/pyt_splade
'''.strip()

def generate_vis(df, mode='Document'):
  if len(df) == 0:
    return ''
  result = []
  if mode == 'Document':
    max_score = max(max(t.values()) for t in df['toks'])
  for row in df.itertuples(index=False):
    if mode == 'Query':
      tok_scores = row.query_toks
      orig_tokens = factory_max.tokenizer.tokenize(row.query)
      max_score = max(tok_scores.values())
      id = row.qid
    else:
      tok_scores = row.toks
      orig_tokens = factory_max.tokenizer.tokenize(row.text)
      id = row.docno
    def toks2span(toks):
      return '<kbd> </kbd>'.join(f'<kbd style="background-color: rgba(66, 135, 245, {tok_scores.get(t, 0)/max_score});">{t}</kbd>' for t in toks)
    orig_tokens_set = set(orig_tokens)
    exp_tokens = [t for t, v in sorted(tok_scores.items(), key=lambda x: (-x[1], x[0])) if t not in orig_tokens_set]
    result.append(f'''
<div style="font-size: 1.2em;">{mode}: <strong>{id}</strong></div>
<div style="margin: 4px 0 16px; padding: 4px; border: 1px solid black;">
<div>
{toks2span(orig_tokens)}
</div>
<div><strong>Expansion Tokens:</strong> {toks2span(exp_tokens)}</div>
</div>
''')
  return '\n'.join(result)

def predict_query(input, agg):
  code = f'''import pyt_splade

splade = pyt_splade.Splade(agg={agg!r})

query_pipeline = splade.query_encoder()

query_pipeline({df2list(input)})
'''
  pipeline = {
    'max': factory_max,
    'sum': factory_sum
  }[agg].query_encoder()
  res = pipeline(input)
  vis = generate_vis(res, mode='Query')
  res['query_toks'] = [json.dumps({k: round(v, 4) for k, v in t.items()}) for t in res['query_toks']]
  return (res, code2md(code, COLAB_INSTALL, COLAB_NAME), vis)

def predict_doc(input, agg):
  code = f'''import pyt_splade

splade = pyt_splade.Splade(agg={repr(agg)})

doc_pipeline = splade.doc_encoder()

doc_pipeline({df2list(input)})
'''
  pipeline = {
    'max': factory_max,
    'sum': factory_sum
  }[agg].doc_encoder()
  res = pipeline(input)
  vis = generate_vis(res, mode='Document')
  res['toks'] = [json.dumps({k: round(v, 4) for k, v in t.items()}) for t in res['toks']]
  return (res, code2md(code, COLAB_INSTALL, COLAB_NAME), vis)

interface(
  MarkdownFile('README.md'),
  MarkdownFile('query.md'),
  Demo(
    predict_query,
    EX_Q,
    [
      gr.Dropdown(choices=['max', 'sum'], value='max', label='Aggregation'),
    ],
    scale=2/3
  ),
  MarkdownFile('doc.md'),
  Demo(
    predict_doc,
    EX_D,
    [
      gr.Dropdown(choices=['max', 'sum'], value='max', label='Aggregation'),
    ],
    scale=2/3
  ),
  MarkdownFile('wrapup.md'),
).launch(share=False)