monot5 / app.py
Sean MacAvaney
update
9fedaf9
raw
history blame
861 Bytes
import pandas as pd
import gradio as gr
import pyterrier as pt
pt.init()
from pyterrier_gradio import Demo, MarkdownFile, interface, df2code, code2md, EX_R
from pyterrier_t5 import MonoT5ReRanker
model = MonoT5ReRanker()
COLAB_NAME = 'pyterrier_t5.ipynb'
COLAB_INSTALL = '''
!pip install -q git+https://github.com/terrierteam/pyterrier_t5
'''.strip()
def predict(input):
code = f'''import pandas as pd
import pyterrier as pt ; pt.init()
from pyterrier_t5 import MonoT5ReRanker
model = MonoT5ReRanker()
model({df2code(input)})
'''
res = model(input)
res['score'] = res['score'].map(lambda x: round(x, 4))
res = res.sort_values(['qid', 'rank'])
return (res, code2md(code, COLAB_INSTALL, COLAB_NAME, colab=False))
interface(
MarkdownFile('README.md'),
Demo(
predict,
EX_R,
[]
),
MarkdownFile('wrapup.md'),
).launch(share=False)