Romain-Cosentino commited on
Commit
d60061e
1 Parent(s): 195da2d
Files changed (1) hide show
  1. app.py +129 -87
app.py CHANGED
@@ -1,103 +1,145 @@
1
- from huggingface_hub import InferenceClient
 
 
 
2
  import gradio as gr
 
 
 
3
 
4
- client = InferenceClient(
5
- "tenyx/TenyxChat-7B-v1"
6
- )
 
 
 
 
 
 
 
 
 
 
 
7
 
8
 
9
- def format_prompt(message, history):
10
- prompt = "<s>"
11
- for user_prompt, bot_response in history:
12
- prompt += f"[INST] {user_prompt} [/INST]"
13
- prompt += f" {bot_response}"
14
- prompt += f"[INST] {message} [/INST]"
15
- return prompt
16
 
 
 
 
 
 
 
 
 
 
 
17
  def generate(
18
- prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
19
- ):
20
- temperature = float(temperature)
21
- if temperature < 1e-2:
22
- temperature = 1e-2
23
- top_p = float(top_p)
 
 
 
 
 
 
 
 
 
 
 
 
24
 
 
 
 
 
 
 
 
25
  generate_kwargs = dict(
26
- temperature=temperature,
 
27
  max_new_tokens=max_new_tokens,
 
28
  top_p=top_p,
 
 
 
29
  repetition_penalty=repetition_penalty,
30
- do_sample=True,
31
- seed=42,
32
  )
 
 
33
 
34
- formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
35
- stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
36
- output = ""
37
-
38
- for response in stream:
39
- output += response.token.text
40
- yield output
41
- return output
42
-
43
-
44
- additional_inputs=[
45
- gr.Textbox(
46
- label="System Prompt",
47
- max_lines=1,
48
- interactive=True,
49
- ),
50
- gr.Slider(
51
- label="Temperature",
52
- value=0.9,
53
- minimum=0.0,
54
- maximum=1.0,
55
- step=0.05,
56
- interactive=True,
57
- info="Higher values produce more diverse outputs",
58
- ),
59
- gr.Slider(
60
- label="Max new tokens",
61
- value=256,
62
- minimum=0,
63
- maximum=1048,
64
- step=64,
65
- interactive=True,
66
- info="The maximum numbers of new tokens",
67
- ),
68
- gr.Slider(
69
- label="Top-p (nucleus sampling)",
70
- value=0.90,
71
- minimum=0.0,
72
- maximum=1,
73
- step=0.05,
74
- interactive=True,
75
- info="Higher values sample more low-probability tokens",
76
- ),
77
- gr.Slider(
78
- label="Repetition penalty",
79
- value=1.2,
80
- minimum=1.0,
81
- maximum=2.0,
82
- step=0.05,
83
- interactive=True,
84
- info="Penalize repeated tokens",
85
- )
86
- ]
87
 
88
- examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
89
- ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
90
- ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
91
- ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
92
- ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
93
- ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
94
- ]
95
 
96
- gr.ChatInterface(
97
  fn=generate,
98
- chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
99
- additional_inputs=additional_inputs,
100
- title="Mixtral 46.7B",
101
- examples=examples,
102
- concurrency_limit=20,
103
- ).launch(show_api=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from threading import Thread
3
+ from typing import Iterator
4
+
5
  import gradio as gr
6
+ import spaces
7
+ import torch
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
9
 
10
+ MAX_MAX_NEW_TOKENS = 2048
11
+ DEFAULT_MAX_NEW_TOKENS = 1024
12
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
13
+
14
+ DESCRIPTION = """
15
+ TenyxChat-8x7B-v1 is part of the TenyxChat series, models trained to function as useful assistants.
16
+ The model is obtained via direct preference tuning using Tenyx's advanced fine-tuning technology. Model details available at [Hugging Face](https://huggingface.co/tenyx/TenyxChat-7B-v1). **It is currently loaded in 4-bit**.
17
+ """
18
+
19
+
20
+ LICENSE = """
21
+ <p/>
22
+ ---
23
+ This demo is governed by the license available at https://huggingface.co/spaces/tenyx/TenyxChat-8x7B-v1/blob/main/LICENSE.txt."""
24
 
25
 
26
+ if not torch.cuda.is_available():
27
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
 
 
 
 
 
28
 
29
+
30
+ if torch.cuda.is_available():
31
+ model_id = "tenyx/TenyxChat-8x7B-v1"
32
+ #model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
33
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
34
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
35
+ tokenizer.use_default_system_prompt = False
36
+
37
+
38
+ @spaces.GPU
39
  def generate(
40
+ message: str,
41
+ chat_history: list[tuple[str, str]],
42
+ system_prompt: str,
43
+ max_new_tokens: int = 1024,
44
+ temperature: float = 0.6,
45
+ top_p: float = 0.9,
46
+ top_k: int = 50,
47
+ repetition_penalty: float = 1.2,
48
+ ) -> Iterator[str]:
49
+ conversation = [{"role": "system", "content": "You are a helpful assistant developed by Tenyx."}]
50
+ if system_prompt:
51
+ conversation.append({"role": "system", "content": system_prompt})
52
+ for user, assistant in chat_history:
53
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
54
+ conversation.append({"role": "user", "content": message})
55
+
56
+ # if not message.strip():
57
+ # return "It looks like your message is empty. How can I assist you today?"
58
 
59
+ input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt = True, return_tensors="pt")
60
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
61
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
62
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
63
+ input_ids = input_ids.to(model.device)
64
+
65
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
66
  generate_kwargs = dict(
67
+ {"input_ids": input_ids},
68
+ streamer=streamer,
69
  max_new_tokens=max_new_tokens,
70
+ do_sample=True,
71
  top_p=top_p,
72
+ top_k=top_k,
73
+ temperature=temperature,
74
+ num_beams=1,
75
  repetition_penalty=repetition_penalty,
 
 
76
  )
77
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
78
+ t.start()
79
 
80
+ outputs = []
81
+ for text in streamer:
82
+ outputs.append(text)
83
+ yield "".join(outputs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
 
 
 
 
 
 
 
85
 
86
+ chat_interface = gr.ChatInterface(
87
  fn=generate,
88
+ additional_inputs=[
89
+ gr.Textbox(label="System prompt", lines=6),
90
+ gr.Slider(
91
+ label="Max new tokens",
92
+ minimum=1,
93
+ maximum=MAX_MAX_NEW_TOKENS,
94
+ step=1,
95
+ value=DEFAULT_MAX_NEW_TOKENS,
96
+ ),
97
+ gr.Slider(
98
+ label="Temperature",
99
+ minimum=0.1,
100
+ maximum=4.0,
101
+ step=0.1,
102
+ value=0.1,
103
+ ),
104
+ gr.Slider(
105
+ label="Top-p (nucleus sampling)",
106
+ minimum=0.05,
107
+ maximum=1.0,
108
+ step=0.05,
109
+ value=0.9,
110
+ ),
111
+ gr.Slider(
112
+ label="Top-k",
113
+ minimum=1,
114
+ maximum=1000,
115
+ step=1,
116
+ value=50,
117
+ ),
118
+ gr.Slider(
119
+ label="Repetition penalty",
120
+ minimum=1.0,
121
+ maximum=2.0,
122
+ step=0.05,
123
+ value=1.2,
124
+ ),
125
+ ],
126
+ stop_btn=None,
127
+ examples=[
128
+ ["Hello there! How are you doing?"],
129
+ ["Can you explain briefly to me what is the Python programming language?"],
130
+ ["Explain the plot of Cinderella in a sentence."],
131
+ ["How many hours does it take a man to eat a Helicopter?"],
132
+ ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
133
+ ],
134
+ )
135
+
136
+ with gr.Blocks(css="style.css") as demo:
137
+ gr.Markdown(DESCRIPTION)
138
+ gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
139
+ chat_interface.render()
140
+ gr.Markdown(LICENSE)
141
+
142
+ if __name__ == "__main__":
143
+ demo.queue(max_size=20).launch()
144
+
145
+