FinTech-Llama-GPT / utils.py
tensorgirl's picture
Update utils.py
b6f4209 verified
raw
history blame
5.01 kB
import datetime
from urllib.request import Request, urlopen
from pypdf import PdfReader
from io import StringIO
import io
import pandas as pd
import os
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
from openai import OpenAI
from groq import Groq
import time
import json
from openai import OpenAI
openai_key = "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"
client = OpenAI(api_key = openai_key)
desc = pd.read_excel('Descriptor.xlsx',header = None)
desc_list = desc.iloc[:,0].to_list()
def callAzure(prompt,text):
url = "https://Meta-Llama-3-70B-Instruct-fkqip-serverless.eastus2.inference.ai.azure.com"
api_key = "o5yaLhTIvg0s5zuYVInBpyneEZO8oonY"
client = OpenAI(base_url=url, api_key=api_key)
msg = "{} {}".format(prompt, text)
response = client.chat.completions.create(
messages=[
{
"role": "user",
"content": msg,
}
],
model="azureai",
max_tokens = 1000
)
return response.choices[0].message.content
def filter(input_json):
sym = pd.read_excel('symbol.xlsx',header = None)
sym_list = sym.iloc[:,0].to_list()
if input_json['FileURL']==None or input_json['FileURL'].lower()=='null':
return [0,"File_URL"]
if input_json['symbol']== 'null' or input_json['symbol'] not in sym_list:
return [0,"symbol"]
if input_json['TypeofAnnouncement'] not in ['General_Announcements','Outcome','General']:
return [0,"Annoucement"]
if input_json['Descriptor'] not in desc_list:
return [0,"Desc"]
url = 'https://www.bseindia.com/xml-data/corpfiling/AttachLive/'+ input_json['FileURL'].split('Pname=')[-1]
req = Request(url, headers={'User-Agent': 'Mozilla/5.0'})
html = urlopen(req)
cont = html.read()
reader = PdfReader(io.BytesIO(cont))
content = ''
for i in range(len(reader.pages)):
content+= reader.pages[i].extract_text()
document = content
return [1, document]
def summary(input_json):
prompt = pd.read_excel('DescriptorPrompt.xlsx')
promptShort = prompt.iloc[:,1].to_list()
promptLong = prompt.iloc[:,2].to_list()
output = {}
filtering_results = filter(input_json)
if filtering_results[0] == 0:
#return 0
return filtering_results[1]
id = desc_list.index(input_json['Descriptor'])
long_text = filtering_results[1]
long_text = long_text.lstrip()
long_text = long_text.rstrip()
long_text = long_text[:6000]
url = 'https://www.bseindia.com/xml-data/corpfiling/AttachLive/'+ input_json['FileURL'].split('Pname=')[-1]
output["Link to BSE website"] = url
output["Date of time of receiving data from BSE"] = input_json["newsdate"] + "Z"
output["Stock Ticker"] = input_json['symbol']
answer = callAzure("You are an financial expert. Wherever possible, mention the name of the company " + promptShort[id] + " Do not exceed over 400 characters", long_text)
try:
idx = answer.index("\n")
except:
idx = -2
output['Short Summary'] = answer[idx+2:]
answer = callAzure("Make sure the following summary of a news article is not more than 80 words. Rewrite it and make it below 80 words ", output['Short Summary'])
try:
idx = answer.index("\n")
except:
idx = -2
output['Short Summary'] = answer[idx+2:]
prompt = "Answer in 1 word only. Financial SEO tag for this news article. Nothing more than that"
answer = callAzure(prompt, output['Short Summary'])
output['Tag'] = answer
prompt = "Answer in single sentence. A headline for this News Article. Nothing more than that"
answer = callAzure(prompt, output['Short Summary'])
output['Headline'] = answer
utc_now = datetime.datetime.utcnow()
ist_now = utc_now.astimezone(datetime.timezone(datetime.timedelta(hours=5, minutes=30)))
Date = ist_now.strftime("%Y-%m-%d")
time = ist_now.strftime("%X")
output['Date and time of data delivery from Skylark'] = Date+"T"+time+"Z"
prompt = "Answer in one word the sentiment of this News out of Positive, Negative or Neutral {}"
output['Sentiment'] = callAzure(prompt, output['Short Summary'])
completion = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a financial expert. Help the client with summarizing the financial newsletter. Write the summary in max 500 words. Do not truncate."},
{"role": "user", "content": "{} {}".format(promptLong[id], long_text)}
],
temperature=0,
max_tokens=4000,
)
output['Long summary'] = completion.choices[0].message.content
# response = client.images.generate(
# model="dall-e-3",
# prompt=headline.text,
# size="1024x1024",
# quality="standard",
# n=1
# )
# output["Link to Infographic (data visualization only)] = response.data[0].url
return output