Spaces:
Sleeping
Sleeping
import datetime | |
from urllib.request import Request, urlopen | |
from pypdf import PdfReader | |
from io import StringIO | |
import io | |
import pandas as pd | |
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import pipeline | |
from openai import OpenAI | |
from groq import Groq | |
import time | |
import json | |
from openai import OpenAI | |
openai_key = "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" | |
client = OpenAI(api_key = openai_key) | |
desc = pd.read_excel('Descriptor.xlsx',header = None) | |
desc_list = desc.iloc[:,0].to_list() | |
def callAzure(prompt,text): | |
url = "https://Meta-Llama-3-70B-Instruct-fkqip-serverless.eastus2.inference.ai.azure.com" | |
api_key = "o5yaLhTIvg0s5zuYVInBpyneEZO8oonY" | |
client = OpenAI(base_url=url, api_key=api_key) | |
msg = "{} {}".format(prompt, text) | |
response = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": msg, | |
} | |
], | |
model="azureai", | |
max_tokens = 1000 | |
) | |
return response.choices[0].message.content | |
def filter(input_json): | |
sym = pd.read_excel('symbol.xlsx',header = None) | |
sym_list = sym.iloc[:,0].to_list() | |
if input_json['FileURL']==None or input_json['FileURL'].lower()=='null': | |
return [0,"File_URL"] | |
if input_json['symbol']== 'null' or input_json['symbol'] not in sym_list: | |
return [0,"symbol"] | |
if input_json['TypeofAnnouncement'] not in ['General_Announcements','Outcome','General']: | |
return [0,"Annoucement"] | |
if input_json['Descriptor'] not in desc_list: | |
return [0,"Desc"] | |
url = 'https://www.bseindia.com/xml-data/corpfiling/AttachLive/'+ input_json['FileURL'].split('Pname=')[-1] | |
req = Request(url, headers={'User-Agent': 'Mozilla/5.0'}) | |
html = urlopen(req) | |
cont = html.read() | |
reader = PdfReader(io.BytesIO(cont)) | |
content = '' | |
for i in range(len(reader.pages)): | |
content+= reader.pages[i].extract_text() | |
document = content | |
return [1, document] | |
def summary(input_json): | |
prompt = pd.read_excel('DescriptorPrompt.xlsx') | |
promptShort = prompt.iloc[:,1].to_list() | |
promptLong = prompt.iloc[:,2].to_list() | |
output = {} | |
filtering_results = filter(input_json) | |
if filtering_results[0] == 0: | |
#return 0 | |
return filtering_results[1] | |
id = desc_list.index(input_json['Descriptor']) | |
long_text = filtering_results[1] | |
long_text = long_text.lstrip() | |
long_text = long_text.rstrip() | |
long_text = long_text[:6000] | |
url = 'https://www.bseindia.com/xml-data/corpfiling/AttachLive/'+ input_json['FileURL'].split('Pname=')[-1] | |
output["Link to BSE website"] = url | |
output["Date of time of receiving data from BSE"] = input_json["newsdate"] + "Z" | |
output["Stock Ticker"] = input_json['symbol'] | |
answer = callAzure("You are an financial expert. Wherever possible, mention the name of the company " + promptShort[id] + " Do not exceed over 400 characters", long_text) | |
try: | |
idx = answer.index("\n") | |
except: | |
idx = -2 | |
output['Short Summary'] = answer[idx+2:] | |
answer = callAzure("Make sure the following summary of a news article is not more than 80 words. Rewrite it and make it below 80 words ", output['Short Summary']) | |
try: | |
idx = answer.index("\n") | |
except: | |
idx = -2 | |
output['Short Summary'] = answer[idx+2:] | |
prompt = "Provide the main topic of the news article strictly as a tag, using only one or two words, with only the first word capitalized and the rest in lowercase. No additional text or explanation." | |
answer = callAzure(prompt, output['Short Summary']) | |
output['Tag'] = answer | |
prompt = "Generate a precise headline for the news article that includes the name of the company. Be very careful about correctly representing any financial figures mentioned in lakhs and crores. Provide only the headline, with no additional text or explanation." | |
answer = callAzure(prompt, output['Short Summary']) | |
output['Headline'] = answer | |
utc_now = datetime.datetime.utcnow() | |
ist_now = utc_now.astimezone(datetime.timezone(datetime.timedelta(hours=5, minutes=30))) | |
Date = ist_now.strftime("%Y-%m-%d") | |
time = ist_now.strftime("%X") | |
output['Date and time of data delivery from Skylark'] = Date+"T"+time+"Z" | |
prompt = "Answer in one word the sentiment of this News out of Positive, Negative or Neutral {}" | |
output['Sentiment'] = callAzure(prompt, output['Short Summary']) | |
completion = client.chat.completions.create( | |
model="gpt-4o", | |
messages=[ | |
{"role": "system", "content": "You are a financial expert. Help the client with summarizing the financial newsletter. Write the summary in max 500 words. Do not truncate."}, | |
{"role": "user", "content": "{} {}".format(promptLong[id], long_text)} | |
], | |
temperature=0, | |
max_tokens=4000, | |
) | |
output['Long summary'] = completion.choices[0].message.content | |
# response = client.images.generate( | |
# model="dall-e-3", | |
# prompt=headline.text, | |
# size="1024x1024", | |
# quality="standard", | |
# n=1 | |
# ) | |
# output["Link to Infographic (data visualization only)] = response.data[0].url | |
return output |