File size: 6,320 Bytes
0ba900e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import logging
from typing import List

import numpy as np
import tensorflow as tf
from transformers import BertTokenizer, TFAutoModelForMaskedLM

from rhyme_with_ai.token_weighter import TokenWeighter
from rhyme_with_ai.utils import pairwise


class RhymeGenerator:
    def __init__(
        self,
        model: TFAutoModelForMaskedLM,
        tokenizer: BertTokenizer,
        token_weighter: TokenWeighter = None,
    ):
        """Generate rhymes.
        Parameters
        ----------
        model : Model for masked language modelling
        tokenizer : Tokenizer for model
        token_weighter : Class that weighs tokens
        """

        self.model = model
        self.tokenizer = tokenizer
        if token_weighter is None:
            token_weighter = TokenWeighter(tokenizer)
        self.token_weighter = token_weighter
        self._logger = logging.getLogger(__name__)

        self.tokenized_rhymes_ = None
        self.position_probas_ = None

        # Easy access.
        self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
        self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
        self.mask_token_id = self.tokenizer.mask_token_id

    def start(self, query: str, rhyme_words: List[str]) -> None:
        """Start the sentence generator.
        Parameters
        ----------
        query : Seed sentence
        rhyme_words : Rhyme words for next sentence
        """
        # TODO: What if no content?
        self._logger.info("Got sentence %s", query)
        tokenized_rhymes = [
            self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
        ]
        # Make same length.
        self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
            tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
        )
        p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
        self.position_probas_ = p / p.sum(1).reshape(-1, 1)

    def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
        """Initialize the rhymes.
        * Tokenize input
        * Append a comma if the sentence does not end in it (might add better predictions as it
            shows the two sentence parts are related)
        * Make second line as long as the original
        * Add a period
        Parameters
        ----------
        query : First line
        rhyme_word : Last word for second line
        Returns
        -------
        Tokenized rhyme lines
        """

        query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
        rhyme_word_token_ids = self.tokenizer.encode(
            rhyme_word, add_special_tokens=False
        )

        if query_token_ids[-1] != self.comma_token_id:
            query_token_ids.append(self.comma_token_id)

        magic_correction = len(rhyme_word_token_ids) + 1  # 1 for comma
        return (
            query_token_ids
            + [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
            + rhyme_word_token_ids
            + [self.period_token_id]
        )

    def mutate(self):
        """Mutate the current rhymes.
        Returns
        -------
        Mutated rhymes
        """
        self.tokenized_rhymes_ = self._mutate(
            self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
        )

        rhymes = []
        for i in range(len(self.tokenized_rhymes_)):
            rhymes.append(
                self.tokenizer.convert_tokens_to_string(
                    self.tokenizer.convert_ids_to_tokens(
                        self.tokenized_rhymes_[i], skip_special_tokens=True
                    )
                )
            )
        return rhymes

    def _mutate(
        self,
        tokenized_rhymes: np.ndarray,
        position_probas: np.ndarray,
        token_id_probas: np.ndarray,
    ) -> np.ndarray:

        replacements = []
        for i in range(tokenized_rhymes.shape[0]):
            mask_idx, masked_token_ids = self._mask_token(
                tokenized_rhymes[i], position_probas[i]
            )
            tokenized_rhymes[i] = masked_token_ids
            replacements.append(mask_idx)

        predictions = self._predict_masked_tokens(tokenized_rhymes)

        for i, token_ids in enumerate(tokenized_rhymes):
            replace_ix = replacements[i]
            token_ids[replace_ix] = self._draw_replacement(
                predictions[i], token_id_probas, replace_ix
            )
            tokenized_rhymes[i] = token_ids

        return tokenized_rhymes

    def _mask_token(self, token_ids, position_probas):
        """Mask line and return index to update."""
        token_ids = self._mask_repeats(token_ids, position_probas)
        ix = self._locate_mask(token_ids, position_probas)
        token_ids[ix] = self.mask_token_id
        return ix, token_ids

    def _locate_mask(self, token_ids, position_probas):
        """Update masks or a random token."""
        if self.mask_token_id in token_ids:
            # Already masks present, just return the last.
            # We used to return thee first but this returns worse predictions.
            return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
        return np.random.choice(range(len(position_probas)), p=position_probas)

    def _mask_repeats(self, token_ids, position_probas):
        """Repeated tokens are generally of less quality."""
        repeats = [
            ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
        ]
        for ii in repeats:
            if position_probas[ii] > 0:
                token_ids[ii] = self.mask_token_id
            if position_probas[ii + 1] > 0:
                token_ids[ii + 1] = self.mask_token_id
        return token_ids

    def _predict_masked_tokens(self, tokenized_rhymes):
        return self.model(tf.constant(tokenized_rhymes))[0]

    def _draw_replacement(self, predictions, token_probas, replace_ix):
        """Get probability, weigh and draw."""
        # TODO (HG): Can't we softmax when calling the model?
        probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
        probas /= probas.sum()
        return np.random.choice(range(len(probas)), p=probas)