KoolCogVideoX / eval /pab /commom_metrics /calculate_lpips.py
zxl
first commit
07c6a04
raw
history blame
2.68 kB
import lpips
import numpy as np
import torch
spatial = True # Return a spatial map of perceptual distance.
# Linearly calibrated models (LPIPS)
loss_fn = lpips.LPIPS(net="alex", spatial=spatial) # Can also set net = 'squeeze' or 'vgg'
# loss_fn = lpips.LPIPS(net='alex', spatial=spatial, lpips=False) # Can also set net = 'squeeze' or 'vgg'
def trans(x):
# if greyscale images add channel
if x.shape[-3] == 1:
x = x.repeat(1, 1, 3, 1, 1)
# value range [0, 1] -> [-1, 1]
x = x * 2 - 1
return x
def calculate_lpips(videos1, videos2, device):
# image should be RGB, IMPORTANT: normalized to [-1,1]
assert videos1.shape == videos2.shape
# videos [batch_size, timestamps, channel, h, w]
# support grayscale input, if grayscale -> channel*3
# value range [0, 1] -> [-1, 1]
videos1 = trans(videos1)
videos2 = trans(videos2)
lpips_results = []
for video_num in range(videos1.shape[0]):
# get a video
# video [timestamps, channel, h, w]
video1 = videos1[video_num]
video2 = videos2[video_num]
lpips_results_of_a_video = []
for clip_timestamp in range(len(video1)):
# get a img
# img [timestamps[x], channel, h, w]
# img [channel, h, w] tensor
img1 = video1[clip_timestamp].unsqueeze(0).to(device)
img2 = video2[clip_timestamp].unsqueeze(0).to(device)
loss_fn.to(device)
# calculate lpips of a video
lpips_results_of_a_video.append(loss_fn.forward(img1, img2).mean().detach().cpu().tolist())
lpips_results.append(lpips_results_of_a_video)
lpips_results = np.array(lpips_results)
lpips = {}
lpips_std = {}
for clip_timestamp in range(len(video1)):
lpips[clip_timestamp] = np.mean(lpips_results[:, clip_timestamp])
lpips_std[clip_timestamp] = np.std(lpips_results[:, clip_timestamp])
result = {
"value": lpips,
"value_std": lpips_std,
"video_setting": video1.shape,
"video_setting_name": "time, channel, heigth, width",
}
return result
# test code / using example
def main():
NUMBER_OF_VIDEOS = 8
VIDEO_LENGTH = 50
CHANNEL = 3
SIZE = 64
videos1 = torch.zeros(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
videos2 = torch.ones(NUMBER_OF_VIDEOS, VIDEO_LENGTH, CHANNEL, SIZE, SIZE, requires_grad=False)
device = torch.device("cuda")
# device = torch.device("cpu")
import json
result = calculate_lpips(videos1, videos2, device)
print(json.dumps(result, indent=4))
if __name__ == "__main__":
main()