Spaces:
Sleeping
Sleeping
import re | |
from typing import Optional, Tuple, Union | |
import torch | |
from diffusers.models import AutoencoderKL | |
from videosys.core.pab_mgr import PABConfig, set_pab_manager | |
from videosys.core.pipeline import VideoSysPipeline, VideoSysPipelineOutput | |
from videosys.utils.utils import save_video | |
from .datasets import get_image_size, get_num_frames | |
from .inference_utils import ( | |
append_generated, | |
append_score_to_prompts, | |
apply_mask_strategy, | |
collect_references_batch, | |
dframe_to_frame, | |
extract_json_from_prompts, | |
extract_prompts_loop, | |
merge_prompt, | |
prepare_multi_resolution_info, | |
split_prompt, | |
) | |
from .rflow import RFLOW | |
from .stdit3 import STDiT3_XL_2 | |
from .text_encoder import T5Encoder, text_preprocessing | |
from .vae import OpenSoraVAE_V1_2 | |
class OpenSoraPABConfig(PABConfig): | |
def __init__( | |
self, | |
steps: int = 50, | |
spatial_broadcast: bool = True, | |
spatial_threshold: list = [450, 930], | |
spatial_gap: int = 2, | |
temporal_broadcast: bool = True, | |
temporal_threshold: list = [450, 930], | |
temporal_gap: int = 4, | |
cross_broadcast: bool = True, | |
cross_threshold: list = [450, 930], | |
cross_gap: int = 6, | |
diffusion_skip: bool = False, | |
diffusion_timestep_respacing: list = None, | |
diffusion_skip_timestep: list = None, | |
mlp_skip: bool = True, | |
mlp_spatial_skip_config: dict = { | |
676: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
788: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
864: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
}, | |
mlp_temporal_skip_config: dict = { | |
676: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
788: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
864: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
}, | |
): | |
super().__init__( | |
steps=steps, | |
spatial_broadcast=spatial_broadcast, | |
spatial_threshold=spatial_threshold, | |
spatial_gap=spatial_gap, | |
temporal_broadcast=temporal_broadcast, | |
temporal_threshold=temporal_threshold, | |
temporal_gap=temporal_gap, | |
cross_broadcast=cross_broadcast, | |
cross_threshold=cross_threshold, | |
cross_gap=cross_gap, | |
diffusion_skip=diffusion_skip, | |
diffusion_timestep_respacing=diffusion_timestep_respacing, | |
diffusion_skip_timestep=diffusion_skip_timestep, | |
mlp_skip=mlp_skip, | |
mlp_spatial_skip_config=mlp_spatial_skip_config, | |
mlp_temporal_skip_config=mlp_temporal_skip_config, | |
) | |
class OpenSoraConfig: | |
def __init__( | |
self, | |
world_size: int = 1, | |
transformer: str = "hpcai-tech/OpenSora-STDiT-v3", | |
vae: str = "hpcai-tech/OpenSora-VAE-v1.2", | |
text_encoder: str = "DeepFloyd/t5-v1_1-xxl", | |
# ======= scheduler ======= | |
num_sampling_steps: int = 30, | |
cfg_scale: float = 7.0, | |
# ======= vae ======== | |
tiling_size: int = 4, | |
# ======= pab ======== | |
enable_pab: bool = False, | |
pab_config: PABConfig = OpenSoraPABConfig(), | |
): | |
# ======= engine ======== | |
self.world_size = world_size | |
# ======= pipeline ======== | |
self.pipeline_cls = OpenSoraPipeline | |
self.transformer = transformer | |
self.vae = vae | |
self.text_encoder = text_encoder | |
# ======= scheduler ======== | |
self.num_sampling_steps = num_sampling_steps | |
self.cfg_scale = cfg_scale | |
# ======= vae ======== | |
self.tiling_size = tiling_size | |
# ======= pab ======== | |
self.enable_pab = enable_pab | |
self.pab_config = pab_config | |
class OpenSoraPipeline(VideoSysPipeline): | |
r""" | |
Pipeline for text-to-image generation using PixArt-Alpha. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`T5EncoderModel`]): | |
Frozen text-encoder. PixArt-Alpha uses | |
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. | |
tokenizer (`T5Tokenizer`): | |
Tokenizer of class | |
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
transformer ([`Transformer2DModel`]): | |
A text conditioned `Transformer2DModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
""" | |
bad_punct_regex = re.compile( | |
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" | |
) # noqa | |
_optional_components = ["tokenizer", "text_encoder"] | |
model_cpu_offload_seq = "text_encoder->transformer->vae" | |
def __init__( | |
self, | |
config: OpenSoraConfig, | |
text_encoder: Optional[T5Encoder] = None, | |
vae: Optional[AutoencoderKL] = None, | |
transformer: Optional[STDiT3_XL_2] = None, | |
scheduler: Optional[RFLOW] = None, | |
device: torch.device = torch.device("cuda"), | |
dtype: torch.dtype = torch.bfloat16, | |
): | |
super().__init__() | |
self._config = config | |
self._device = device | |
self._dtype = dtype | |
# initialize the model if not provided | |
if text_encoder is None: | |
text_encoder = T5Encoder( | |
from_pretrained=config.text_encoder, model_max_length=300, device=device, dtype=dtype | |
) | |
if vae is None: | |
vae = OpenSoraVAE_V1_2( | |
from_pretrained="hpcai-tech/OpenSora-VAE-v1.2", | |
micro_frame_size=17, | |
micro_batch_size=config.tiling_size, | |
).to(dtype) | |
if transformer is None: | |
transformer = STDiT3_XL_2( | |
from_pretrained="hpcai-tech/OpenSora-STDiT-v3", | |
qk_norm=True, | |
enable_flash_attn=True, | |
enable_layernorm_kernel=True, | |
in_channels=vae.out_channels, | |
caption_channels=text_encoder.output_dim, | |
model_max_length=text_encoder.model_max_length, | |
).to(device, dtype) | |
text_encoder.y_embedder = transformer.y_embedder | |
if scheduler is None: | |
scheduler = RFLOW( | |
use_timestep_transform=True, num_sampling_steps=config.num_sampling_steps, cfg_scale=config.cfg_scale | |
) | |
# pab | |
if config.enable_pab: | |
set_pab_manager(config.pab_config) | |
# set eval and device | |
self.set_eval_and_device(device, text_encoder, vae, transformer) | |
self.register_modules(text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler) | |
def generate( | |
self, | |
prompt: str, | |
resolution="480p", | |
aspect_ratio="9:16", | |
num_frames: int = 51, | |
loop: int = 1, | |
llm_refine: bool = False, | |
negative_prompt: str = "", | |
ms: Optional[str] = "", | |
refs: Optional[str] = "", | |
aes: float = 6.5, | |
flow: Optional[float] = None, | |
camera_motion: Optional[float] = None, | |
condition_frame_length: int = 5, | |
align: int = 5, | |
condition_frame_edit: float = 0.0, | |
return_dict: bool = True, | |
verbose: bool = True, | |
) -> Union[VideoSysPipelineOutput, Tuple]: | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
resolution (`str`, *optional*, defaults to `"480p"`): | |
The resolution of the generated video. | |
aspect_ratio (`str`, *optional*, defaults to `"9:16"`): | |
The aspect ratio of the generated video. | |
num_frames (`int`, *optional*, defaults to 51): | |
The number of frames to generate. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
timesteps are used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The width in pixels of the generated image. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not | |
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
clean_caption (`bool`, *optional*, defaults to `True`): | |
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to | |
be installed. If the dependencies are not installed, the embeddings will be created from the raw | |
prompt. | |
mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images | |
""" | |
# == basic == | |
fps = 24 | |
image_size = get_image_size(resolution, aspect_ratio) | |
num_frames = get_num_frames(num_frames) | |
# == prepare batch prompts == | |
batch_prompts = [prompt] | |
ms = [ms] | |
refs = [refs] | |
# == get json from prompts == | |
batch_prompts, refs, ms = extract_json_from_prompts(batch_prompts, refs, ms) | |
# == get reference for condition == | |
refs = collect_references_batch(refs, self.vae, image_size) | |
# == multi-resolution info == | |
model_args = prepare_multi_resolution_info( | |
"OpenSora", len(batch_prompts), image_size, num_frames, fps, self._device, self._dtype | |
) | |
# == process prompts step by step == | |
# 0. split prompt | |
# each element in the list is [prompt_segment_list, loop_idx_list] | |
batched_prompt_segment_list = [] | |
batched_loop_idx_list = [] | |
for prompt in batch_prompts: | |
prompt_segment_list, loop_idx_list = split_prompt(prompt) | |
batched_prompt_segment_list.append(prompt_segment_list) | |
batched_loop_idx_list.append(loop_idx_list) | |
# 1. refine prompt by openai | |
# if llm_refine: | |
# only call openai API when | |
# 1. seq parallel is not enabled | |
# 2. seq parallel is enabled and the process is rank 0 | |
# if not enable_sequence_parallelism or (enable_sequence_parallelism and coordinator.is_master()): | |
# for idx, prompt_segment_list in enumerate(batched_prompt_segment_list): | |
# batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list) | |
# # sync the prompt if using seq parallel | |
# if enable_sequence_parallelism: | |
# coordinator.block_all() | |
# prompt_segment_length = [ | |
# len(prompt_segment_list) for prompt_segment_list in batched_prompt_segment_list | |
# ] | |
# # flatten the prompt segment list | |
# batched_prompt_segment_list = [ | |
# prompt_segment | |
# for prompt_segment_list in batched_prompt_segment_list | |
# for prompt_segment in prompt_segment_list | |
# ] | |
# # create a list of size equal to world size | |
# broadcast_obj_list = [batched_prompt_segment_list] * coordinator.world_size | |
# dist.broadcast_object_list(broadcast_obj_list, 0) | |
# # recover the prompt list | |
# batched_prompt_segment_list = [] | |
# segment_start_idx = 0 | |
# all_prompts = broadcast_obj_list[0] | |
# for num_segment in prompt_segment_length: | |
# batched_prompt_segment_list.append( | |
# all_prompts[segment_start_idx : segment_start_idx + num_segment] | |
# ) | |
# segment_start_idx += num_segment | |
# 2. append score | |
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list): | |
batched_prompt_segment_list[idx] = append_score_to_prompts( | |
prompt_segment_list, | |
aes=aes, | |
flow=flow, | |
camera_motion=camera_motion, | |
) | |
# 3. clean prompt with T5 | |
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list): | |
batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list] | |
# 4. merge to obtain the final prompt | |
batch_prompts = [] | |
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list): | |
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list)) | |
# == Iter over loop generation == | |
video_clips = [] | |
for loop_i in range(loop): | |
# == get prompt for loop i == | |
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i) | |
# == add condition frames for loop == | |
if loop_i > 0: | |
refs, ms = append_generated( | |
self.vae, video_clips[-1], refs, ms, loop_i, condition_frame_length, condition_frame_edit | |
) | |
# == sampling == | |
input_size = (num_frames, *image_size) | |
latent_size = self.vae.get_latent_size(input_size) | |
z = torch.randn( | |
len(batch_prompts), self.vae.out_channels, *latent_size, device=self._device, dtype=self._dtype | |
) | |
masks = apply_mask_strategy(z, refs, ms, loop_i, align=align) | |
samples = self.scheduler.sample( | |
self.transformer, | |
self.text_encoder, | |
z=z, | |
prompts=batch_prompts_loop, | |
device=self._device, | |
additional_args=model_args, | |
progress=verbose, | |
mask=masks, | |
) | |
samples = self.vae.decode(samples.to(self._dtype), num_frames=num_frames) | |
video_clips.append(samples) | |
for i in range(1, loop): | |
video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :] | |
video = torch.cat(video_clips, dim=1) | |
low, high = -1, 1 | |
video.clamp_(min=low, max=high) | |
video.sub_(low).div_(max(high - low, 1e-5)) | |
video = video.mul(255).add_(0.5).clamp_(0, 255).permute(0, 2, 3, 4, 1).to("cpu", torch.uint8) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return VideoSysPipelineOutput(video=video) | |
def save_video(self, video, output_path): | |
save_video(video, output_path, fps=24) | |