Spaces:
Sleeping
Sleeping
# Adapted from OpenSora | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# OpenSora: https://github.com/hpcaitech/Open-Sora | |
# -------------------------------------------------------- | |
import json | |
import os | |
import re | |
import torch | |
from .datasets import IMG_FPS, read_from_path | |
def prepare_multi_resolution_info(info_type, batch_size, image_size, num_frames, fps, device, dtype): | |
if info_type is None: | |
return dict() | |
elif info_type == "PixArtMS": | |
hw = torch.tensor([image_size], device=device, dtype=dtype).repeat(batch_size, 1) | |
ar = torch.tensor([[image_size[0] / image_size[1]]], device=device, dtype=dtype).repeat(batch_size, 1) | |
return dict(ar=ar, hw=hw) | |
elif info_type in ["STDiT2", "OpenSora"]: | |
fps = fps if num_frames > 1 else IMG_FPS | |
fps = torch.tensor([fps], device=device, dtype=dtype).repeat(batch_size) | |
height = torch.tensor([image_size[0]], device=device, dtype=dtype).repeat(batch_size) | |
width = torch.tensor([image_size[1]], device=device, dtype=dtype).repeat(batch_size) | |
num_frames = torch.tensor([num_frames], device=device, dtype=dtype).repeat(batch_size) | |
ar = torch.tensor([image_size[0] / image_size[1]], device=device, dtype=dtype).repeat(batch_size) | |
return dict(height=height, width=width, num_frames=num_frames, ar=ar, fps=fps) | |
else: | |
raise NotImplementedError | |
def load_prompts(prompt_path, start_idx=None, end_idx=None): | |
with open(prompt_path, "r") as f: | |
prompts = [line.strip() for line in f.readlines()] | |
prompts = prompts[start_idx:end_idx] | |
return prompts | |
def get_save_path_name( | |
save_dir, | |
sample_name=None, # prefix | |
sample_idx=None, # sample index | |
prompt=None, # used prompt | |
prompt_as_path=False, # use prompt as path | |
num_sample=1, # number of samples to generate for one prompt | |
k=None, # kth sample | |
): | |
if sample_name is None: | |
sample_name = "" if prompt_as_path else "sample" | |
sample_name_suffix = prompt if prompt_as_path else f"_{sample_idx:04d}" | |
save_path = os.path.join(save_dir, f"{sample_name}{sample_name_suffix[:50]}") | |
if num_sample != 1: | |
save_path = f"{save_path}-{k}" | |
return save_path | |
def get_eval_save_path_name( | |
save_dir, | |
id, # add id parameter | |
sample_name=None, # prefix | |
sample_idx=None, # sample index | |
prompt=None, # used prompt | |
prompt_as_path=False, # use prompt as path | |
num_sample=1, # number of samples to generate for one prompt | |
k=None, # kth sample | |
): | |
if sample_name is None: | |
sample_name = "" if prompt_as_path else "sample" | |
save_path = os.path.join(save_dir, f"{id}") | |
if num_sample != 1: | |
save_path = f"{save_path}-{k}" | |
return save_path | |
def append_score_to_prompts(prompts, aes=None, flow=None, camera_motion=None): | |
new_prompts = [] | |
for prompt in prompts: | |
new_prompt = prompt | |
if aes is not None and "aesthetic score:" not in prompt: | |
new_prompt = f"{new_prompt} aesthetic score: {aes:.1f}." | |
if flow is not None and "motion score:" not in prompt: | |
new_prompt = f"{new_prompt} motion score: {flow:.1f}." | |
if camera_motion is not None and "camera motion:" not in prompt: | |
new_prompt = f"{new_prompt} camera motion: {camera_motion}." | |
new_prompts.append(new_prompt) | |
return new_prompts | |
def extract_json_from_prompts(prompts, reference, mask_strategy): | |
ret_prompts = [] | |
for i, prompt in enumerate(prompts): | |
parts = re.split(r"(?=[{])", prompt) | |
assert len(parts) <= 2, f"Invalid prompt: {prompt}" | |
ret_prompts.append(parts[0]) | |
if len(parts) > 1: | |
additional_info = json.loads(parts[1]) | |
for key in additional_info: | |
assert key in ["reference_path", "mask_strategy"], f"Invalid key: {key}" | |
if key == "reference_path": | |
reference[i] = additional_info[key] | |
elif key == "mask_strategy": | |
mask_strategy[i] = additional_info[key] | |
return ret_prompts, reference, mask_strategy | |
def collect_references_batch(reference_paths, vae, image_size): | |
refs_x = [] # refs_x: [batch, ref_num, C, T, H, W] | |
for reference_path in reference_paths: | |
if reference_path == "": | |
refs_x.append([]) | |
continue | |
ref_path = reference_path.split(";") | |
ref = [] | |
for r_path in ref_path: | |
r = read_from_path(r_path, image_size, transform_name="resize_crop") | |
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype)) | |
r_x = r_x.squeeze(0) | |
ref.append(r_x) | |
refs_x.append(ref) | |
return refs_x | |
def extract_prompts_loop(prompts, num_loop): | |
ret_prompts = [] | |
for prompt in prompts: | |
if prompt.startswith("|0|"): | |
prompt_list = prompt.split("|")[1:] | |
text_list = [] | |
for i in range(0, len(prompt_list), 2): | |
start_loop = int(prompt_list[i]) | |
text = prompt_list[i + 1] | |
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop + 1 | |
text_list.extend([text] * (end_loop - start_loop)) | |
prompt = text_list[num_loop] | |
ret_prompts.append(prompt) | |
return ret_prompts | |
def split_prompt(prompt_text): | |
if prompt_text.startswith("|0|"): | |
# this is for prompts which look like | |
# |0| a beautiful day |1| a sunny day |2| a rainy day | |
# we want to parse it into a list of prompts with the loop index | |
prompt_list = prompt_text.split("|")[1:] | |
text_list = [] | |
loop_idx = [] | |
for i in range(0, len(prompt_list), 2): | |
start_loop = int(prompt_list[i]) | |
text = prompt_list[i + 1].strip() | |
text_list.append(text) | |
loop_idx.append(start_loop) | |
return text_list, loop_idx | |
else: | |
return [prompt_text], None | |
def merge_prompt(text_list, loop_idx_list=None): | |
if loop_idx_list is None: | |
return text_list[0] | |
else: | |
prompt = "" | |
for i, text in enumerate(text_list): | |
prompt += f"|{loop_idx_list[i]}|{text}" | |
return prompt | |
MASK_DEFAULT = ["0", "0", "0", "0", "1", "0"] | |
def parse_mask_strategy(mask_strategy): | |
mask_batch = [] | |
if mask_strategy == "" or mask_strategy is None: | |
return mask_batch | |
mask_strategy = mask_strategy.split(";") | |
for mask in mask_strategy: | |
mask_group = mask.split(",") | |
num_group = len(mask_group) | |
assert num_group >= 1 and num_group <= 6, f"Invalid mask strategy: {mask}" | |
mask_group.extend(MASK_DEFAULT[num_group:]) | |
for i in range(5): | |
mask_group[i] = int(mask_group[i]) | |
mask_group[5] = float(mask_group[5]) | |
mask_batch.append(mask_group) | |
return mask_batch | |
def find_nearest_point(value, point, max_value): | |
t = value // point | |
if value % point > point / 2 and t < max_value // point - 1: | |
t += 1 | |
return t * point | |
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i, align=None): | |
masks = [] | |
no_mask = True | |
for i, mask_strategy in enumerate(mask_strategys): | |
no_mask = False | |
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device) | |
mask_strategy = parse_mask_strategy(mask_strategy) | |
for mst in mask_strategy: | |
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst | |
if loop_id != loop_i: | |
continue | |
ref = refs_x[i][m_id] | |
if m_ref_start < 0: | |
# ref: [C, T, H, W] | |
m_ref_start = ref.shape[1] + m_ref_start | |
if m_target_start < 0: | |
# z: [B, C, T, H, W] | |
m_target_start = z.shape[2] + m_target_start | |
if align is not None: | |
m_ref_start = find_nearest_point(m_ref_start, align, ref.shape[1]) | |
m_target_start = find_nearest_point(m_target_start, align, z.shape[2]) | |
m_length = min(m_length, z.shape[2] - m_target_start, ref.shape[1] - m_ref_start) | |
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length] | |
mask[m_target_start : m_target_start + m_length] = edit_ratio | |
masks.append(mask) | |
if no_mask: | |
return None | |
masks = torch.stack(masks) | |
return masks | |
def append_generated(vae, generated_video, refs_x, mask_strategy, loop_i, condition_frame_length, condition_frame_edit): | |
ref_x = vae.encode(generated_video) | |
for j, refs in enumerate(refs_x): | |
if refs is None: | |
refs_x[j] = [ref_x[j]] | |
else: | |
refs.append(ref_x[j]) | |
if mask_strategy[j] is None or mask_strategy[j] == "": | |
mask_strategy[j] = "" | |
else: | |
mask_strategy[j] += ";" | |
mask_strategy[ | |
j | |
] += f"{loop_i},{len(refs)-1},-{condition_frame_length},0,{condition_frame_length},{condition_frame_edit}" | |
return refs_x, mask_strategy | |
def dframe_to_frame(num): | |
assert num % 5 == 0, f"Invalid num: {num}" | |
return num // 5 * 17 | |
OPENAI_CLIENT = None | |
REFINE_PROMPTS = None | |
REFINE_PROMPTS_PATH = "assets/texts/t2v_pllava.txt" | |
REFINE_PROMPTS_TEMPLATE = """ | |
You need to refine user's input prompt. The user's input prompt is used for video generation task. You need to refine the user's prompt to make it more suitable for the task. Here are some examples of refined prompts: | |
{} | |
The refined prompt should pay attention to all objects in the video. The description should be useful for AI to re-generate the video. The description should be no more than six sentences. The refined prompt should be in English. | |
""" | |
RANDOM_PROMPTS = None | |
RANDOM_PROMPTS_TEMPLATE = """ | |
You need to generate one input prompt for video generation task. The prompt should be suitable for the task. Here are some examples of refined prompts: | |
{} | |
The prompt should pay attention to all objects in the video. The description should be useful for AI to re-generate the video. The description should be no more than six sentences. The prompt should be in English. | |
""" | |
def get_openai_response(sys_prompt, usr_prompt, model="gpt-4o"): | |
global OPENAI_CLIENT | |
if OPENAI_CLIENT is None: | |
from openai import OpenAI | |
OPENAI_CLIENT = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) | |
completion = OPENAI_CLIENT.chat.completions.create( | |
model=model, | |
messages=[ | |
{ | |
"role": "system", | |
"content": sys_prompt, | |
}, # <-- This is the system message that provides context to the model | |
{ | |
"role": "user", | |
"content": usr_prompt, | |
}, # <-- This is the user message for which the model will generate a response | |
], | |
) | |
return completion.choices[0].message.content | |
def get_random_prompt_by_openai(): | |
global RANDOM_PROMPTS | |
if RANDOM_PROMPTS is None: | |
examples = load_prompts(REFINE_PROMPTS_PATH) | |
RANDOM_PROMPTS = RANDOM_PROMPTS_TEMPLATE.format("\n".join(examples)) | |
response = get_openai_response(RANDOM_PROMPTS, "Generate one example.") | |
return response | |
def refine_prompt_by_openai(prompt): | |
global REFINE_PROMPTS | |
if REFINE_PROMPTS is None: | |
examples = load_prompts(REFINE_PROMPTS_PATH) | |
REFINE_PROMPTS = REFINE_PROMPTS_TEMPLATE.format("\n".join(examples)) | |
response = get_openai_response(REFINE_PROMPTS, prompt) | |
return response | |
def has_openai_key(): | |
return "OPENAI_API_KEY" in os.environ | |
def refine_prompts_by_openai(prompts): | |
new_prompts = [] | |
for prompt in prompts: | |
try: | |
if prompt.strip() == "": | |
new_prompt = get_random_prompt_by_openai() | |
print(f"[Info] Empty prompt detected, generate random prompt: {new_prompt}") | |
else: | |
new_prompt = refine_prompt_by_openai(prompt) | |
print(f"[Info] Refine prompt: {prompt} -> {new_prompt}") | |
new_prompts.append(new_prompt) | |
except Exception as e: | |
print(f"[Warning] Failed to refine prompt: {prompt} due to {e}") | |
new_prompts.append(prompt) | |
return new_prompts | |
def add_watermark( | |
input_video_path, watermark_image_path="./assets/images/watermark/watermark.png", output_video_path=None | |
): | |
# execute this command in terminal with subprocess | |
# return if the process is successful | |
if output_video_path is None: | |
output_video_path = input_video_path.replace(".mp4", "_watermark.mp4") | |
cmd = f'ffmpeg -y -i {input_video_path} -i {watermark_image_path} -filter_complex "[1][0]scale2ref=oh*mdar:ih*0.1[logo][video];[video][logo]overlay" {output_video_path}' | |
exit_code = os.system(cmd) | |
is_success = exit_code == 0 | |
return is_success | |