Spaces:
Sleeping
Sleeping
# Adapted from Latte | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# Latte: https://github.com/Vchitect/Latte | |
# -------------------------------------------------------- | |
import html | |
import inspect | |
import re | |
import urllib.parse as ul | |
from typing import Callable, List, Optional, Tuple, Union | |
import einops | |
import ftfy | |
import torch | |
import torch.distributed as dist | |
import tqdm | |
from bs4 import BeautifulSoup | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder | |
from diffusers.schedulers import DDIMScheduler | |
from diffusers.utils.torch_utils import randn_tensor | |
from transformers import T5EncoderModel, T5Tokenizer | |
from videosys.core.pab_mgr import ( | |
PABConfig, | |
get_diffusion_skip, | |
get_diffusion_skip_timestep, | |
set_pab_manager, | |
skip_diffusion_timestep, | |
update_steps, | |
) | |
from videosys.core.pipeline import VideoSysPipeline, VideoSysPipelineOutput | |
from videosys.utils.logging import logger | |
from videosys.utils.utils import save_video | |
from .latte_t2v import LatteT2V | |
class LattePABConfig(PABConfig): | |
def __init__( | |
self, | |
steps: int = 50, | |
spatial_broadcast: bool = True, | |
spatial_threshold: list = [100, 800], | |
spatial_gap: int = 2, | |
temporal_broadcast: bool = True, | |
temporal_threshold: list = [100, 800], | |
temporal_gap: int = 3, | |
cross_broadcast: bool = True, | |
cross_threshold: list = [100, 800], | |
cross_gap: int = 6, | |
diffusion_skip: bool = False, | |
diffusion_timestep_respacing: list = None, | |
diffusion_skip_timestep: list = None, | |
mlp_skip: bool = True, | |
mlp_spatial_skip_config: dict = { | |
720: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
640: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
560: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
480: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
400: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
}, | |
mlp_temporal_skip_config: dict = { | |
720: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
640: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
560: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
480: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
400: {"block": [0, 1, 2, 3, 4], "skip_count": 2}, | |
}, | |
): | |
super().__init__( | |
steps=steps, | |
spatial_broadcast=spatial_broadcast, | |
spatial_threshold=spatial_threshold, | |
spatial_gap=spatial_gap, | |
temporal_broadcast=temporal_broadcast, | |
temporal_threshold=temporal_threshold, | |
temporal_gap=temporal_gap, | |
cross_broadcast=cross_broadcast, | |
cross_threshold=cross_threshold, | |
cross_gap=cross_gap, | |
diffusion_skip=diffusion_skip, | |
diffusion_timestep_respacing=diffusion_timestep_respacing, | |
diffusion_skip_timestep=diffusion_skip_timestep, | |
mlp_skip=mlp_skip, | |
mlp_spatial_skip_config=mlp_spatial_skip_config, | |
mlp_temporal_skip_config=mlp_temporal_skip_config, | |
) | |
class LatteConfig: | |
def __init__( | |
self, | |
world_size: int = 1, | |
model_path: str = "maxin-cn/Latte-1", | |
enable_vae_temporal_decoder: bool = True, | |
# ======= scheduler ======== | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
variance_type: str = "learned_range", | |
# ======= pab ======== | |
enable_pab: bool = False, | |
pab_config: PABConfig = LattePABConfig(), | |
): | |
# ======= engine ======== | |
self.world_size = world_size | |
# ======= pipeline ======== | |
self.pipeline_cls = LattePipeline | |
# ======= model ======== | |
self.model_path = model_path | |
self.enable_vae_temporal_decoder = enable_vae_temporal_decoder | |
# ======= scheduler ======== | |
self.beta_start = beta_start | |
self.beta_end = beta_end | |
self.beta_schedule = beta_schedule | |
self.variance_type = variance_type | |
# ======= pab ======== | |
self.enable_pab = enable_pab | |
self.pab_config = pab_config | |
class LattePipeline(VideoSysPipeline): | |
r""" | |
Pipeline for text-to-image generation using PixArt-Alpha. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`T5EncoderModel`]): | |
Frozen text-encoder. PixArt-Alpha uses | |
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. | |
tokenizer (`T5Tokenizer`): | |
Tokenizer of class | |
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
transformer ([`Transformer2DModel`]): | |
A text conditioned `Transformer2DModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
""" | |
bad_punct_regex = re.compile( | |
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" | |
) # noqa | |
_optional_components = ["tokenizer", "text_encoder"] | |
model_cpu_offload_seq = "text_encoder->transformer->vae" | |
def __init__( | |
self, | |
config: LatteConfig, | |
tokenizer: Optional[T5Tokenizer] = None, | |
text_encoder: Optional[T5EncoderModel] = None, | |
vae: Optional[AutoencoderKL] = None, | |
transformer: Optional[LatteT2V] = None, | |
scheduler: Optional[DDIMScheduler] = None, | |
device: torch.device = torch.device("cuda"), | |
dtype: torch.dtype = torch.float16, | |
): | |
super().__init__() | |
self._config = config | |
# initialize the model if not provided | |
if transformer is None: | |
transformer = LatteT2V.from_pretrained(config.model_path, subfolder="transformer", video_length=16).to( | |
dtype=dtype | |
) | |
if vae is None: | |
if config.enable_vae_temporal_decoder: | |
vae = AutoencoderKLTemporalDecoder.from_pretrained( | |
config.model_path, subfolder="vae_temporal_decoder", torch_dtype=dtype | |
) | |
else: | |
vae = AutoencoderKL.from_pretrained(config.model_path, subfolder="vae", torch_dtype=dtype) | |
if tokenizer is None: | |
tokenizer = T5Tokenizer.from_pretrained(config.model_path, subfolder="tokenizer") | |
if text_encoder is None: | |
text_encoder = T5EncoderModel.from_pretrained( | |
config.model_path, subfolder="text_encoder", torch_dtype=dtype | |
) | |
if scheduler is None: | |
scheduler = DDIMScheduler.from_pretrained( | |
config.model_path, | |
subfolder="scheduler", | |
beta_start=config.beta_start, | |
beta_end=config.beta_end, | |
beta_schedule=config.beta_schedule, | |
variance_type=config.variance_type, | |
clip_sample=False, | |
) | |
# pab | |
if config.enable_pab: | |
set_pab_manager(config.pab_config) | |
# set eval and device | |
self.set_eval_and_device(device, text_encoder, vae, transformer) | |
self.register_modules( | |
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
# Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py | |
def mask_text_embeddings(self, emb, mask): | |
if emb.shape[0] == 1: | |
keep_index = mask.sum().item() | |
return emb[:, :, :keep_index, :], keep_index # 1, 120, 4096 -> 1 7 4096 | |
else: | |
masked_feature = emb * mask[:, None, :, None] # 1 120 4096 | |
return masked_feature, emb.shape[2] | |
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt | |
def encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: str = "", | |
num_images_per_prompt: int = 1, | |
device: Optional[torch.device] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
clean_caption: bool = False, | |
mask_feature: bool = True, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For | |
PixArt-Alpha, this should be "". | |
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
whether to use classifier free guidance or not | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
number of images that should be generated per prompt | |
device: (`torch.device`, *optional*): | |
torch device to place the resulting embeddings on | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" | |
string. | |
clean_caption (bool, defaults to `False`): | |
If `True`, the function will preprocess and clean the provided caption before encoding. | |
mask_feature: (bool, defaults to `True`): | |
If `True`, the function will mask the text embeddings. | |
""" | |
embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None | |
if device is None: | |
device = self._execution_device | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# See Section 3.1. of the paper. | |
max_length = 120 | |
if prompt_embeds is None: | |
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {max_length} tokens: {removed_text}" | |
) | |
attention_mask = text_inputs.attention_mask.to(device) | |
prompt_embeds_attention_mask = attention_mask | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds_attention_mask = torch.ones_like(prompt_embeds) | |
if self.text_encoder is not None: | |
dtype = self.text_encoder.dtype | |
elif self.transformer is not None: | |
dtype = self.transformer.dtype | |
else: | |
dtype = None | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1) | |
prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens = [negative_prompt] * batch_size | |
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
attention_mask = uncond_input.attention_mask.to(device) | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
else: | |
negative_prompt_embeds = None | |
# Perform additional masking. | |
if mask_feature and not embeds_initially_provided: | |
prompt_embeds = prompt_embeds.unsqueeze(1) | |
masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask) | |
masked_prompt_embeds = masked_prompt_embeds.squeeze(1) | |
masked_negative_prompt_embeds = ( | |
negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None | |
) | |
# import torch.nn.functional as F | |
# padding = (0, 0, 0, 113) # (左, 右, 下, 上) | |
# masked_prompt_embeds_ = F.pad(masked_prompt_embeds, padding, "constant", 0) | |
# masked_negative_prompt_embeds_ = F.pad(masked_negative_prompt_embeds, padding, "constant", 0) | |
# print(masked_prompt_embeds == masked_prompt_embeds_[:, :masked_negative_prompt_embeds.shape[1], ...]) | |
return masked_prompt_embeds, masked_negative_prompt_embeds | |
# return masked_prompt_embeds_, masked_negative_prompt_embeds_ | |
return prompt_embeds, negative_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
negative_prompt, | |
callback_steps, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing | |
def _text_preprocessing(self, text, clean_caption=False): | |
if not isinstance(text, (tuple, list)): | |
text = [text] | |
def process(text: str): | |
if clean_caption: | |
text = self._clean_caption(text) | |
text = self._clean_caption(text) | |
else: | |
text = text.lower().strip() | |
return text | |
return [process(t) for t in text] | |
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption | |
def _clean_caption(self, caption): | |
caption = str(caption) | |
caption = ul.unquote_plus(caption) | |
caption = caption.strip().lower() | |
caption = re.sub("<person>", "person", caption) | |
# urls: | |
caption = re.sub( | |
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
"", | |
caption, | |
) # regex for urls | |
caption = re.sub( | |
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
"", | |
caption, | |
) # regex for urls | |
# html: | |
caption = BeautifulSoup(caption, features="html.parser").text | |
# @<nickname> | |
caption = re.sub(r"@[\w\d]+\b", "", caption) | |
# 31C0—31EF CJK Strokes | |
# 31F0—31FF Katakana Phonetic Extensions | |
# 3200—32FF Enclosed CJK Letters and Months | |
# 3300—33FF CJK Compatibility | |
# 3400—4DBF CJK Unified Ideographs Extension A | |
# 4DC0—4DFF Yijing Hexagram Symbols | |
# 4E00—9FFF CJK Unified Ideographs | |
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) | |
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) | |
caption = re.sub(r"[\u3200-\u32ff]+", "", caption) | |
caption = re.sub(r"[\u3300-\u33ff]+", "", caption) | |
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) | |
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) | |
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) | |
####################################################### | |
# все виды тире / all types of dash --> "-" | |
caption = re.sub( | |
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa | |
"-", | |
caption, | |
) | |
# кавычки к одному стандарту | |
caption = re.sub(r"[`´«»“”¨]", '"', caption) | |
caption = re.sub(r"[‘’]", "'", caption) | |
# " | |
caption = re.sub(r""?", "", caption) | |
# & | |
caption = re.sub(r"&", "", caption) | |
# ip adresses: | |
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) | |
# article ids: | |
caption = re.sub(r"\d:\d\d\s+$", "", caption) | |
# \n | |
caption = re.sub(r"\\n", " ", caption) | |
# "#123" | |
caption = re.sub(r"#\d{1,3}\b", "", caption) | |
# "#12345.." | |
caption = re.sub(r"#\d{5,}\b", "", caption) | |
# "123456.." | |
caption = re.sub(r"\b\d{6,}\b", "", caption) | |
# filenames: | |
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) | |
# | |
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" | |
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" | |
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT | |
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " | |
# this-is-my-cute-cat / this_is_my_cute_cat | |
regex2 = re.compile(r"(?:\-|\_)") | |
if len(re.findall(regex2, caption)) > 3: | |
caption = re.sub(regex2, " ", caption) | |
caption = ftfy.fix_text(caption) | |
caption = html.unescape(html.unescape(caption)) | |
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 | |
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc | |
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 | |
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) | |
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) | |
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) | |
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) | |
caption = re.sub(r"\bpage\s+\d+\b", "", caption) | |
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... | |
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) | |
caption = re.sub(r"\b\s+\:\s+", r": ", caption) | |
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) | |
caption = re.sub(r"\s+", " ", caption) | |
caption.strip() | |
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) | |
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) | |
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) | |
caption = re.sub(r"^\.\S+$", "", caption) | |
return caption.strip() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents( | |
self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
video_length, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def generate( | |
self, | |
prompt: str = None, | |
negative_prompt: str = "", | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
clean_caption: bool = True, | |
mask_feature: bool = True, | |
enable_temporal_attentions: bool = True, | |
verbose: bool = True, | |
) -> Union[VideoSysPipelineOutput, Tuple]: | |
""" | |
Function invoked when calling the pipeline for generation. | |
Latte can only generate video of 16 frames 512x512. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
timesteps are used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not | |
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
clean_caption (`bool`, *optional*, defaults to `True`): | |
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to | |
be installed. If the dependencies are not installed, the embeddings will be created from the raw | |
prompt. | |
mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked. | |
enable_temporal_attentions (`bool`, defaults to `True`): | |
If `True`, the model will use temporal attentions to generate the video. | |
verbose (`bool`, *optional*, defaults to `True`): | |
Whether to print progress bars and other information during inference. | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images | |
""" | |
# 1. Check inputs. Raise error if not correct | |
video_length = 16 | |
height = 512 | |
width = 512 | |
update_steps(num_inference_steps) | |
self.check_inputs(prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds) | |
# 2. Default height and width to transformer | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self.text_encoder.device or self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
clean_caption=clean_caption, | |
mask_feature=mask_feature, | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
# timesteps = self.scheduler.timesteps # NOTE change timestep_respacing here | |
if get_diffusion_skip() and get_diffusion_skip_timestep() is not None: | |
# TODO add assertion for timestep_respacing | |
# timestep_respacing = get_diffusion_skip_timestep() | |
# timesteps = space_timesteps(1000, timestep_respacing) | |
diffusion_skip_timestep = get_diffusion_skip_timestep() | |
timesteps = skip_diffusion_timestep(self.scheduler.timesteps, diffusion_skip_timestep) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
orignal_timesteps = self.scheduler.timesteps | |
if verbose and dist.get_rank() == 0: | |
print("============================") | |
print("skip diffusion steps!!!") | |
print("============================") | |
print(f"orignal sample timesteps: {orignal_timesteps}") | |
print(f"orignal diffusion steps: {len(orignal_timesteps)}") | |
print("============================") | |
print(f"skip diffusion steps: {get_diffusion_skip_timestep()}") | |
print(f"sample timesteps: {timesteps}") | |
print(f"num_inference_steps: {len(timesteps)}") | |
print("============================") | |
else: | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latents. | |
latent_channels = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
latent_channels, | |
video_length, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 6.1 Prepare micro-conditions. | |
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} | |
if self.transformer.config.sample_size == 128: | |
resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1) | |
aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1) | |
resolution = resolution.to(dtype=prompt_embeds.dtype, device=device) | |
aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device) | |
added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} | |
# 7. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
progress_wrap = tqdm.tqdm if verbose and dist.get_rank() == 0 else (lambda x: x) | |
for i, t in progress_wrap(list(enumerate(timesteps))): | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
current_timestep = t | |
if not torch.is_tensor(current_timestep): | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = latent_model_input.device.type == "mps" | |
if isinstance(current_timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) | |
elif len(current_timestep.shape) == 0: | |
current_timestep = current_timestep[None].to(latent_model_input.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
current_timestep = current_timestep.expand(latent_model_input.shape[0]) | |
# predict noise model_output | |
noise_pred = self.transformer( | |
latent_model_input, | |
all_timesteps=timesteps, | |
encoder_hidden_states=prompt_embeds, | |
timestep=current_timestep, | |
added_cond_kwargs=added_cond_kwargs, | |
enable_temporal_attentions=enable_temporal_attentions, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# learned sigma | |
if self.transformer.config.out_channels // 2 == latent_channels: | |
noise_pred = noise_pred.chunk(2, dim=1)[0] | |
else: | |
noise_pred = noise_pred | |
# compute previous image: x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latents": | |
if latents.shape[2] == 1: # image | |
video = self.decode_latents_image(latents) | |
else: # video | |
if self._config.enable_vae_temporal_decoder: | |
video = self.decode_latents_with_temporal_decoder(latents) | |
else: | |
video = self.decode_latents(latents) | |
else: | |
video = latents | |
return VideoSysPipelineOutput(video=video) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return VideoSysPipelineOutput(video=video) | |
def decode_latents_image(self, latents): | |
video_length = latents.shape[2] | |
latents = 1 / self.vae.config.scaling_factor * latents | |
latents = einops.rearrange(latents, "b c f h w -> (b f) c h w") | |
video = [] | |
for frame_idx in range(latents.shape[0]): | |
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample) | |
video = torch.cat(video) | |
video = einops.rearrange(video, "(b f) c h w -> b f c h w", f=video_length) | |
video = (video / 2.0 + 0.5).clamp(0, 1) | |
return video | |
def decode_latents(self, latents): | |
video_length = latents.shape[2] | |
latents = 1 / self.vae.config.scaling_factor * latents | |
latents = einops.rearrange(latents, "b c f h w -> (b f) c h w") | |
video = [] | |
for frame_idx in range(latents.shape[0]): | |
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample) | |
video = torch.cat(video) | |
video = einops.rearrange(video, "(b f) c h w -> b f h w c", f=video_length) | |
video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().contiguous() | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
return video | |
def decode_latents_with_temporal_decoder(self, latents): | |
video_length = latents.shape[2] | |
latents = 1 / self.vae.config.scaling_factor * latents | |
latents = einops.rearrange(latents, "b c f h w -> (b f) c h w") | |
video = [] | |
decode_chunk_size = 14 | |
for frame_idx in range(0, latents.shape[0], decode_chunk_size): | |
num_frames_in = latents[frame_idx : frame_idx + decode_chunk_size].shape[0] | |
decode_kwargs = {} | |
decode_kwargs["num_frames"] = num_frames_in | |
video.append(self.vae.decode(latents[frame_idx : frame_idx + decode_chunk_size], **decode_kwargs).sample) | |
video = torch.cat(video) | |
video = einops.rearrange(video, "(b f) c h w -> b f h w c", f=video_length) | |
video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().contiguous() | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
return video | |
def save_video(self, video, output_path): | |
save_video(video, output_path, fps=8) | |