Spaces:
Sleeping
Sleeping
import argparse | |
import torch | |
from vbench import VBench | |
full_info_path = "./vbench/VBench_full_info.json" | |
dimensions = [ | |
"subject_consistency", | |
"imaging_quality", | |
"background_consistency", | |
"motion_smoothness", | |
"overall_consistency", | |
"human_action", | |
"multiple_objects", | |
"spatial_relationship", | |
"object_class", | |
"color", | |
"aesthetic_quality", | |
"appearance_style", | |
"temporal_flickering", | |
"scene", | |
"temporal_style", | |
"dynamic_degree", | |
] | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--video_path", required=True, type=str) | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
args = parse_args() | |
save_path = args.video_path.replace("/samples/", "/vbench_out/") | |
kwargs = {} | |
kwargs["imaging_quality_preprocessing_mode"] = "longer" # use VBench/evaluate.py default | |
for dimension in dimensions: | |
my_VBench = VBench(torch.device("cuda"), full_info_path, save_path) | |
my_VBench.evaluate( | |
videos_path=args.video_path, | |
name=dimension, | |
local=False, | |
read_frame=False, | |
dimension_list=[dimension], | |
mode="vbench_standard", | |
**kwargs, | |
) | |