Spaces:
Sleeping
Sleeping
File size: 7,452 Bytes
07c6a04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# Adapted from Open-Sora-Plan
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
# --------------------------------------------------------
from typing import Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from .attention import TemporalAttnBlock
from .block import Block
from .conv import CausalConv3d
from .normalize import Normalize
from .ops import cast_tuple, video_to_image
from .resnet_block import ResnetBlock3D
class Upsample(Block):
def __init__(self, in_channels, out_channels):
super().__init__()
self.with_conv = True
if self.with_conv:
self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
@video_to_image
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(Block):
def __init__(self, in_channels, out_channels):
super().__init__()
self.with_conv = True
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=0)
@video_to_image
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class SpatialDownsample2x(Block):
def __init__(
self,
chan_in,
chan_out,
kernel_size: Union[int, Tuple[int]] = (3, 3),
stride: Union[int, Tuple[int]] = (2, 2),
):
super().__init__()
kernel_size = cast_tuple(kernel_size, 2)
stride = cast_tuple(stride, 2)
self.chan_in = chan_in
self.chan_out = chan_out
self.kernel_size = kernel_size
self.conv = CausalConv3d(self.chan_in, self.chan_out, (1,) + self.kernel_size, stride=(1,) + stride, padding=0)
def forward(self, x):
pad = (0, 1, 0, 1, 0, 0)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class SpatialUpsample2x(Block):
def __init__(
self,
chan_in,
chan_out,
kernel_size: Union[int, Tuple[int]] = (3, 3),
stride: Union[int, Tuple[int]] = (1, 1),
):
super().__init__()
self.chan_in = chan_in
self.chan_out = chan_out
self.kernel_size = kernel_size
self.conv = CausalConv3d(self.chan_in, self.chan_out, (1,) + self.kernel_size, stride=(1,) + stride, padding=1)
def forward(self, x):
t = x.shape[2]
x = rearrange(x, "b c t h w -> b (c t) h w")
x = F.interpolate(x, scale_factor=(2, 2), mode="nearest")
x = rearrange(x, "b (c t) h w -> b c t h w", t=t)
x = self.conv(x)
return x
class TimeDownsample2x(Block):
def __init__(self, chan_in, chan_out, kernel_size: int = 3):
super().__init__()
self.kernel_size = kernel_size
self.conv = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1))
def forward(self, x):
first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size - 1, 1, 1))
x = torch.concatenate((first_frame_pad, x), dim=2)
return self.conv(x)
class TimeUpsample2x(Block):
def __init__(self, chan_in, chan_out):
super().__init__()
def forward(self, x):
if x.size(2) > 1:
x, x_ = x[:, :, :1], x[:, :, 1:]
x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear")
x = torch.concat([x, x_], dim=2)
return x
class TimeDownsampleRes2x(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size: int = 3,
mix_factor: float = 2.0,
):
super().__init__()
self.kernel_size = cast_tuple(kernel_size, 3)
self.avg_pool = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1))
self.conv = nn.Conv3d(in_channels, out_channels, self.kernel_size, stride=(2, 1, 1), padding=(0, 1, 1))
self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor]))
def forward(self, x):
alpha = torch.sigmoid(self.mix_factor)
first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size[0] - 1, 1, 1))
x = torch.concatenate((first_frame_pad, x), dim=2)
return alpha * self.avg_pool(x) + (1 - alpha) * self.conv(x)
class TimeUpsampleRes2x(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size: int = 3,
mix_factor: float = 2.0,
):
super().__init__()
self.conv = CausalConv3d(in_channels, out_channels, kernel_size, padding=1)
self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor]))
def forward(self, x):
alpha = torch.sigmoid(self.mix_factor)
if x.size(2) > 1:
x, x_ = x[:, :, :1], x[:, :, 1:]
x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear")
x = torch.concat([x, x_], dim=2)
return alpha * x + (1 - alpha) * self.conv(x)
class TimeDownsampleResAdv2x(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size: int = 3,
mix_factor: float = 1.5,
):
super().__init__()
self.kernel_size = cast_tuple(kernel_size, 3)
self.avg_pool = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1))
self.attn = TemporalAttnBlock(in_channels)
self.res = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, dropout=0.0)
self.conv = nn.Conv3d(in_channels, out_channels, self.kernel_size, stride=(2, 1, 1), padding=(0, 1, 1))
self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor]))
def forward(self, x):
first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size[0] - 1, 1, 1))
x = torch.concatenate((first_frame_pad, x), dim=2)
alpha = torch.sigmoid(self.mix_factor)
return alpha * self.avg_pool(x) + (1 - alpha) * self.conv(self.attn((self.res(x))))
class TimeUpsampleResAdv2x(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size: int = 3,
mix_factor: float = 1.5,
):
super().__init__()
self.res = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, dropout=0.0)
self.attn = TemporalAttnBlock(in_channels)
self.norm = Normalize(in_channels=in_channels)
self.conv = CausalConv3d(in_channels, out_channels, kernel_size, padding=1)
self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor]))
def forward(self, x):
if x.size(2) > 1:
x, x_ = x[:, :, :1], x[:, :, 1:]
x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear")
x = torch.concat([x, x_], dim=2)
alpha = torch.sigmoid(self.mix_factor)
return alpha * x + (1 - alpha) * self.conv(self.attn(self.res(x)))
|