File size: 3,297 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Adapted from Open-Sora-Plan

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
# --------------------------------------------------------

import torch

from .block import Block
from .conv import CausalConv3d
from .normalize import Normalize
from .ops import nonlinearity, video_to_image


class ResnetBlock2D(Block):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = in_channels if out_channels is None else out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    @video_to_image
    def forward(self, x):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)
        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)
        x = x + h
        return x


class ResnetBlock3D(Block):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = in_channels if out_channels is None else out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = CausalConv3d(in_channels, out_channels, 3, padding=1)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = CausalConv3d(out_channels, out_channels, 3, padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = CausalConv3d(in_channels, out_channels, 3, padding=1)
            else:
                self.nin_shortcut = CausalConv3d(in_channels, out_channels, 1, padding=0)

    def forward(self, x):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)
        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)
        return x + h