File size: 20,558 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# Adapted from OpenSora

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# OpenSora: https://github.com/hpcaitech/Open-Sora
# --------------------------------------------------------


import os
from functools import partial

import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from timm.models.layers import DropPath
from timm.models.vision_transformer import Mlp
from transformers import PretrainedConfig, PreTrainedModel

from videosys.core.comm import (
    all_to_all_with_pad,
    gather_sequence,
    get_spatial_pad,
    get_temporal_pad,
    set_spatial_pad,
    set_temporal_pad,
    split_sequence,
)
from videosys.core.pab_mgr import (
    enable_pab,
    get_mlp_output,
    if_broadcast_cross,
    if_broadcast_mlp,
    if_broadcast_spatial,
    if_broadcast_temporal,
    save_mlp_output,
)
from videosys.core.parallel_mgr import (
    enable_sequence_parallel,
    get_cfg_parallel_size,
    get_data_parallel_group,
    get_sequence_parallel_group,
)
from videosys.utils.utils import batch_func

from .modules import (
    Attention,
    CaptionEmbedder,
    MultiHeadCrossAttention,
    PatchEmbed3D,
    PositionEmbedding2D,
    SizeEmbedder,
    T2IFinalLayer,
    TimestepEmbedder,
    approx_gelu,
    get_layernorm,
    t2i_modulate,
)
from .utils import auto_grad_checkpoint, load_checkpoint


class STDiT3Block(nn.Module):
    def __init__(
        self,
        hidden_size,
        num_heads,
        mlp_ratio=4.0,
        drop_path=0.0,
        rope=None,
        qk_norm=False,
        temporal=False,
        enable_flash_attn=False,
        block_idx=None,
    ):
        super().__init__()
        self.temporal = temporal
        self.hidden_size = hidden_size
        self.enable_flash_attn = enable_flash_attn

        attn_cls = Attention
        mha_cls = MultiHeadCrossAttention

        self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False)
        self.attn = attn_cls(
            hidden_size,
            num_heads=num_heads,
            qkv_bias=True,
            qk_norm=qk_norm,
            rope=rope,
            enable_flash_attn=enable_flash_attn,
        )
        self.cross_attn = mha_cls(hidden_size, num_heads)
        self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False)
        self.mlp = Mlp(
            in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)

        # pab
        self.block_idx = block_idx
        self.attn_count = 0
        self.last_attn = None
        self.cross_count = 0
        self.last_cross = None
        self.mlp_count = 0

    def t_mask_select(self, x_mask, x, masked_x, T, S):
        # x: [B, (T, S), C]
        # mased_x: [B, (T, S), C]
        # x_mask: [B, T]
        x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
        masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S)
        x = torch.where(x_mask[:, :, None, None], x, masked_x)
        x = rearrange(x, "B T S C -> B (T S) C")
        return x

    def forward(
        self,
        x,
        y,
        t,
        mask=None,  # text mask
        x_mask=None,  # temporal mask
        t0=None,  # t with timestamp=0
        T=None,  # number of frames
        S=None,  # number of pixel patches
        timestep=None,
        all_timesteps=None,
    ):
        # prepare modulate parameters
        B, N, C = x.shape
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)
        ).chunk(6, dim=1)
        if x_mask is not None:
            shift_msa_zero, scale_msa_zero, gate_msa_zero, shift_mlp_zero, scale_mlp_zero, gate_mlp_zero = (
                self.scale_shift_table[None] + t0.reshape(B, 6, -1)
            ).chunk(6, dim=1)

        if enable_pab():
            if self.temporal:
                broadcast_attn, self.attn_count = if_broadcast_temporal(int(timestep[0]), self.attn_count)
            else:
                broadcast_attn, self.attn_count = if_broadcast_spatial(
                    int(timestep[0]), self.attn_count, self.block_idx
                )

        if enable_pab() and broadcast_attn:
            x_m_s = self.last_attn
        else:
            # modulate (attention)
            x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa)
            if x_mask is not None:
                x_m_zero = t2i_modulate(self.norm1(x), shift_msa_zero, scale_msa_zero)
                x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)

            # attention
            if self.temporal:
                if enable_sequence_parallel():
                    x_m, S, T = self.dynamic_switch(x_m, S, T, to_spatial_shard=True)
                x_m = rearrange(x_m, "B (T S) C -> (B S) T C", T=T, S=S)
                x_m = self.attn(x_m)
                x_m = rearrange(x_m, "(B S) T C -> B (T S) C", T=T, S=S)
                if enable_sequence_parallel():
                    x_m, S, T = self.dynamic_switch(x_m, S, T, to_spatial_shard=False)
            else:
                x_m = rearrange(x_m, "B (T S) C -> (B T) S C", T=T, S=S)
                x_m = self.attn(x_m)
                x_m = rearrange(x_m, "(B T) S C -> B (T S) C", T=T, S=S)

            # modulate (attention)
            x_m_s = gate_msa * x_m
            if x_mask is not None:
                x_m_s_zero = gate_msa_zero * x_m
                x_m_s = self.t_mask_select(x_mask, x_m_s, x_m_s_zero, T, S)

            if enable_pab():
                self.last_attn = x_m_s

        # residual
        x = x + self.drop_path(x_m_s)

        # cross attention
        if enable_pab():
            broadcast_cross, self.cross_count = if_broadcast_cross(int(timestep[0]), self.cross_count)

        if enable_pab() and broadcast_cross:
            x = x + self.last_cross
        else:
            x_cross = self.cross_attn(x, y, mask)
            if enable_pab():
                self.last_cross = x_cross
            x = x + x_cross

        if enable_pab():
            broadcast_mlp, self.mlp_count, broadcast_next, skip_range = if_broadcast_mlp(
                int(timestep[0]),
                self.mlp_count,
                self.block_idx,
                all_timesteps,
                is_temporal=self.temporal,
            )

        if enable_pab() and broadcast_mlp:
            x_m_s = get_mlp_output(
                skip_range,
                timestep=int(timestep[0]),
                block_idx=self.block_idx,
                is_temporal=self.temporal,
            )
        else:
            # modulate (MLP)
            x_m = t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)
            if x_mask is not None:
                x_m_zero = t2i_modulate(self.norm2(x), shift_mlp_zero, scale_mlp_zero)
                x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S)

            # MLP
            x_m = self.mlp(x_m)

            # modulate (MLP)
            x_m_s = gate_mlp * x_m
            if x_mask is not None:
                x_m_s_zero = gate_mlp_zero * x_m
                x_m_s = self.t_mask_select(x_mask, x_m_s, x_m_s_zero, T, S)

            if enable_pab() and broadcast_next:
                save_mlp_output(
                    timestep=int(timestep[0]),
                    block_idx=self.block_idx,
                    ff_output=x_m_s,
                    is_temporal=self.temporal,
                )

        # residual
        x = x + self.drop_path(x_m_s)

        return x

    def dynamic_switch(self, x, s, t, to_spatial_shard: bool):
        if to_spatial_shard:
            scatter_dim, gather_dim = 2, 1
            scatter_pad = get_spatial_pad()
            gather_pad = get_temporal_pad()
        else:
            scatter_dim, gather_dim = 1, 2
            scatter_pad = get_temporal_pad()
            gather_pad = get_spatial_pad()

        x = rearrange(x, "b (t s) d -> b t s d", t=t, s=s)
        x = all_to_all_with_pad(
            x,
            get_sequence_parallel_group(),
            scatter_dim=scatter_dim,
            gather_dim=gather_dim,
            scatter_pad=scatter_pad,
            gather_pad=gather_pad,
        )
        new_s, new_t = x.shape[2], x.shape[1]
        x = rearrange(x, "b t s d -> b (t s) d")
        return x, new_s, new_t


class STDiT3Config(PretrainedConfig):
    model_type = "STDiT3"

    def __init__(
        self,
        input_size=(None, None, None),
        input_sq_size=512,
        in_channels=4,
        patch_size=(1, 2, 2),
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        pred_sigma=True,
        drop_path=0.0,
        caption_channels=4096,
        model_max_length=300,
        qk_norm=True,
        enable_flash_attn=False,
        only_train_temporal=False,
        freeze_y_embedder=False,
        skip_y_embedder=False,
        **kwargs,
    ):
        self.input_size = input_size
        self.input_sq_size = input_sq_size
        self.in_channels = in_channels
        self.patch_size = patch_size
        self.hidden_size = hidden_size
        self.depth = depth
        self.num_heads = num_heads
        self.mlp_ratio = mlp_ratio
        self.class_dropout_prob = class_dropout_prob
        self.pred_sigma = pred_sigma
        self.drop_path = drop_path
        self.caption_channels = caption_channels
        self.model_max_length = model_max_length
        self.qk_norm = qk_norm
        self.enable_flash_attn = enable_flash_attn
        self.only_train_temporal = only_train_temporal
        self.freeze_y_embedder = freeze_y_embedder
        self.skip_y_embedder = skip_y_embedder
        super().__init__(**kwargs)


class STDiT3(PreTrainedModel):
    config_class = STDiT3Config

    def __init__(self, config):
        super().__init__(config)
        self.pred_sigma = config.pred_sigma
        self.in_channels = config.in_channels
        self.out_channels = config.in_channels * 2 if config.pred_sigma else config.in_channels

        # model size related
        self.depth = config.depth
        self.mlp_ratio = config.mlp_ratio
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_heads

        # computation related
        self.drop_path = config.drop_path
        self.enable_flash_attn = config.enable_flash_attn

        # input size related
        self.patch_size = config.patch_size
        self.input_sq_size = config.input_sq_size
        self.pos_embed = PositionEmbedding2D(config.hidden_size)

        from rotary_embedding_torch import RotaryEmbedding

        self.rope = RotaryEmbedding(dim=self.hidden_size // self.num_heads)

        # embedding
        self.x_embedder = PatchEmbed3D(config.patch_size, config.in_channels, config.hidden_size)
        self.t_embedder = TimestepEmbedder(config.hidden_size)
        self.fps_embedder = SizeEmbedder(self.hidden_size)
        self.t_block = nn.Sequential(
            nn.SiLU(),
            nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True),
        )
        self.y_embedder = CaptionEmbedder(
            in_channels=config.caption_channels,
            hidden_size=config.hidden_size,
            uncond_prob=config.class_dropout_prob,
            act_layer=approx_gelu,
            token_num=config.model_max_length,
        )

        # spatial blocks
        drop_path = [x.item() for x in torch.linspace(0, self.drop_path, config.depth)]
        self.spatial_blocks = nn.ModuleList(
            [
                STDiT3Block(
                    hidden_size=config.hidden_size,
                    num_heads=config.num_heads,
                    mlp_ratio=config.mlp_ratio,
                    drop_path=drop_path[i],
                    qk_norm=config.qk_norm,
                    enable_flash_attn=config.enable_flash_attn,
                    block_idx=i,
                )
                for i in range(config.depth)
            ]
        )

        # temporal blocks
        drop_path = [x.item() for x in torch.linspace(0, self.drop_path, config.depth)]
        self.temporal_blocks = nn.ModuleList(
            [
                STDiT3Block(
                    hidden_size=config.hidden_size,
                    num_heads=config.num_heads,
                    mlp_ratio=config.mlp_ratio,
                    drop_path=drop_path[i],
                    qk_norm=config.qk_norm,
                    enable_flash_attn=config.enable_flash_attn,
                    # temporal
                    temporal=True,
                    rope=self.rope.rotate_queries_or_keys,
                    block_idx=i,
                )
                for i in range(config.depth)
            ]
        )
        # final layer
        self.final_layer = T2IFinalLayer(config.hidden_size, np.prod(self.patch_size), self.out_channels)

        self.initialize_weights()
        if config.only_train_temporal:
            for param in self.parameters():
                param.requires_grad = False
            for block in self.temporal_blocks:
                for param in block.parameters():
                    param.requires_grad = True

        if config.freeze_y_embedder:
            for param in self.y_embedder.parameters():
                param.requires_grad = False

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize fps_embedder
        nn.init.normal_(self.fps_embedder.mlp[0].weight, std=0.02)
        nn.init.constant_(self.fps_embedder.mlp[0].bias, 0)
        nn.init.constant_(self.fps_embedder.mlp[2].weight, 0)
        nn.init.constant_(self.fps_embedder.mlp[2].bias, 0)

        # Initialize timporal blocks
        for block in self.temporal_blocks:
            nn.init.constant_(block.attn.proj.weight, 0)
            nn.init.constant_(block.cross_attn.proj.weight, 0)
            nn.init.constant_(block.mlp.fc2.weight, 0)

    def get_dynamic_size(self, x):
        _, _, T, H, W = x.size()
        if T % self.patch_size[0] != 0:
            T += self.patch_size[0] - T % self.patch_size[0]
        if H % self.patch_size[1] != 0:
            H += self.patch_size[1] - H % self.patch_size[1]
        if W % self.patch_size[2] != 0:
            W += self.patch_size[2] - W % self.patch_size[2]
        T = T // self.patch_size[0]
        H = H // self.patch_size[1]
        W = W // self.patch_size[2]
        return (T, H, W)

    def encode_text(self, y, mask=None):
        y = self.y_embedder(y, self.training)  # [B, 1, N_token, C]
        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, self.hidden_size)
            y_lens = mask.sum(dim=1).tolist()
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, self.hidden_size)
        return y, y_lens

    def forward(
        self, x, timestep, all_timesteps, y, mask=None, x_mask=None, fps=None, height=None, width=None, **kwargs
    ):
        # === Split batch ===
        if get_cfg_parallel_size() > 1:
            x, timestep, y, x_mask, mask = batch_func(
                partial(split_sequence, process_group=get_data_parallel_group(), dim=0), x, timestep, y, x_mask, mask
            )

        dtype = self.x_embedder.proj.weight.dtype
        B = x.size(0)
        x = x.to(dtype)
        timestep = timestep.to(dtype)
        y = y.to(dtype)

        # === get pos embed ===
        _, _, Tx, Hx, Wx = x.size()
        T, H, W = self.get_dynamic_size(x)
        S = H * W
        base_size = round(S**0.5)
        resolution_sq = (height[0].item() * width[0].item()) ** 0.5
        scale = resolution_sq / self.input_sq_size
        pos_emb = self.pos_embed(x, H, W, scale=scale, base_size=base_size)

        # === get timestep embed ===
        t = self.t_embedder(timestep, dtype=x.dtype)  # [B, C]
        fps = self.fps_embedder(fps.unsqueeze(1), B)
        t = t + fps
        t_mlp = self.t_block(t)
        t0 = t0_mlp = None
        if x_mask is not None:
            t0_timestep = torch.zeros_like(timestep)
            t0 = self.t_embedder(t0_timestep, dtype=x.dtype)
            t0 = t0 + fps
            t0_mlp = self.t_block(t0)

        # === get y embed ===
        if self.config.skip_y_embedder:
            y_lens = mask
            if isinstance(y_lens, torch.Tensor):
                y_lens = y_lens.long().tolist()
        else:
            y, y_lens = self.encode_text(y, mask)

        # === get x embed ===
        x = self.x_embedder(x)  # [B, N, C]
        x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
        x = x + pos_emb

        # shard over the sequence dim if sp is enabled
        if enable_sequence_parallel():
            set_temporal_pad(T)
            set_spatial_pad(S)
            x = split_sequence(x, get_sequence_parallel_group(), dim=1, grad_scale="down", pad=get_temporal_pad())
            T = x.shape[1]
            x_mask_org = x_mask
            x_mask = split_sequence(
                x_mask, get_sequence_parallel_group(), dim=1, grad_scale="down", pad=get_temporal_pad()
            )

        x = rearrange(x, "B T S C -> B (T S) C", T=T, S=S)

        # === blocks ===
        for spatial_block, temporal_block in zip(self.spatial_blocks, self.temporal_blocks):
            x = auto_grad_checkpoint(
                spatial_block,
                x,
                y,
                t_mlp,
                y_lens,
                x_mask,
                t0_mlp,
                T,
                S,
                timestep,
                all_timesteps=all_timesteps,
            )

            x = auto_grad_checkpoint(
                temporal_block,
                x,
                y,
                t_mlp,
                y_lens,
                x_mask,
                t0_mlp,
                T,
                S,
                timestep,
                all_timesteps=all_timesteps,
            )

        if enable_sequence_parallel():
            x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
            x = gather_sequence(x, get_sequence_parallel_group(), dim=1, grad_scale="up", pad=get_temporal_pad())
            T, S = x.shape[1], x.shape[2]
            x = rearrange(x, "B T S C -> B (T S) C", T=T, S=S)
            x_mask = x_mask_org

        # === final layer ===
        x = self.final_layer(x, t, x_mask, t0, T, S)
        x = self.unpatchify(x, T, H, W, Tx, Hx, Wx)

        # cast to float32 for better accuracy
        x = x.to(torch.float32)

        # === Gather Output ===
        if get_cfg_parallel_size() > 1:
            x = gather_sequence(x, get_data_parallel_group(), dim=0)

        return x

    def unpatchify(self, x, N_t, N_h, N_w, R_t, R_h, R_w):
        """
        Args:
            x (torch.Tensor): of shape [B, N, C]

        Return:
            x (torch.Tensor): of shape [B, C_out, T, H, W]
        """

        # N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
        T_p, H_p, W_p = self.patch_size
        x = rearrange(
            x,
            "B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)",
            N_t=N_t,
            N_h=N_h,
            N_w=N_w,
            T_p=T_p,
            H_p=H_p,
            W_p=W_p,
            C_out=self.out_channels,
        )
        # unpad
        x = x[:, :, :R_t, :R_h, :R_w]
        return x


def STDiT3_XL_2(from_pretrained=None, **kwargs):
    if from_pretrained is not None and not os.path.isdir(from_pretrained):
        model = STDiT3.from_pretrained(from_pretrained, **kwargs)
    else:
        config = STDiT3Config(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs)
        model = STDiT3(config)
        if from_pretrained is not None:
            load_checkpoint(model, from_pretrained)
    return model