Spaces:
Sleeping
Sleeping
File size: 1,554 Bytes
07c6a04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# Adapted from DiT
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DiT: https://github.com/facebookresearch/DiT
# --------------------------------------------------------
import numpy as np
import torchvision.transforms as transforms
from PIL import Image
def center_crop_arr(pil_image, image_size):
"""
Center cropping implementation from ADM.
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
"""
while min(*pil_image.size) >= 2 * image_size:
pil_image = pil_image.resize(tuple(x // 2 for x in pil_image.size), resample=Image.BOX)
scale = image_size / min(*pil_image.size)
pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC)
arr = np.array(pil_image)
crop_y = (arr.shape[0] - image_size) // 2
crop_x = (arr.shape[1] - image_size) // 2
return Image.fromarray(arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size])
def get_transforms_image(image_size=256):
transform = transforms.Compose(
[
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
return transform
|