File size: 26,761 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
# Adapted from Open-Sora-Plan

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
# --------------------------------------------------------

import functools
import hashlib
import os
from collections import namedtuple

import requests
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch import nn
from torchvision import models
from tqdm import tqdm

from videosys.models.open_sora_plan.modules.normalize import ActNorm

URL_MAP = {"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"}

CKPT_MAP = {"vgg_lpips": "vgg.pth"}

MD5_MAP = {"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"}


def download(url, local_path, chunk_size=1024):
    os.makedirs(os.path.split(local_path)[0], exist_ok=True)
    with requests.get(url, stream=True) as r:
        total_size = int(r.headers.get("content-length", 0))
        with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
            with open(local_path, "wb") as f:
                for data in r.iter_content(chunk_size=chunk_size):
                    if data:
                        f.write(data)
                        pbar.update(chunk_size)


def md5_hash(path):
    with open(path, "rb") as f:
        content = f.read()
    return hashlib.md5(content).hexdigest()


def get_ckpt_path(name, root, check=False):
    assert name in URL_MAP
    path = os.path.join(root, CKPT_MAP[name])
    if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
        print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
        download(URL_MAP[name], path)
        md5 = md5_hash(path)
        assert md5 == MD5_MAP[name], md5
    return path


class LPIPS(nn.Module):
    # Learned perceptual metric
    def __init__(self, use_dropout=True):
        super().__init__()
        self.scaling_layer = ScalingLayer()
        self.chns = [64, 128, 256, 512, 512]  # vg16 features
        self.net = vgg16(pretrained=True, requires_grad=False)
        self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
        self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
        self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
        self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
        self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
        self.load_from_pretrained()
        for param in self.parameters():
            param.requires_grad = False

    def load_from_pretrained(self, name="vgg_lpips"):
        ckpt = get_ckpt_path(name, "taming/modules/autoencoder/lpips")
        self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
        print("loaded pretrained LPIPS loss from {}".format(ckpt))

    @classmethod
    def from_pretrained(cls, name="vgg_lpips"):
        if name != "vgg_lpips":
            raise NotImplementedError
        model = cls()
        ckpt = get_ckpt_path(name)
        model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
        return model

    def forward(self, input, target):
        in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
        outs0, outs1 = self.net(in0_input), self.net(in1_input)
        feats0, feats1, diffs = {}, {}, {}
        lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
        for kk in range(len(self.chns)):
            feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
            diffs[kk] = (feats0[kk] - feats1[kk]) ** 2

        res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
        val = res[0]
        for l in range(1, len(self.chns)):
            val += res[l]
        return val


class ScalingLayer(nn.Module):
    def __init__(self):
        super(ScalingLayer, self).__init__()
        self.register_buffer("shift", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None])
        self.register_buffer("scale", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None])

    def forward(self, inp):
        return (inp - self.shift) / self.scale


class NetLinLayer(nn.Module):
    """A single linear layer which does a 1x1 conv"""

    def __init__(self, chn_in, chn_out=1, use_dropout=False):
        super(NetLinLayer, self).__init__()
        layers = (
            [
                nn.Dropout(),
            ]
            if (use_dropout)
            else []
        )
        layers += [
            nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),
        ]
        self.model = nn.Sequential(*layers)


class vgg16(torch.nn.Module):
    def __init__(self, requires_grad=False, pretrained=True):
        super(vgg16, self).__init__()
        vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.N_slices = 5
        for x in range(4):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(4, 9):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(9, 16):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(16, 23):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(23, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h = self.slice1(X)
        h_relu1_2 = h
        h = self.slice2(h)
        h_relu2_2 = h
        h = self.slice3(h)
        h_relu3_3 = h
        h = self.slice4(h)
        h_relu4_3 = h
        h = self.slice5(h)
        h_relu5_3 = h
        vgg_outputs = namedtuple("VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"])
        out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
        return out


def normalize_tensor(x, eps=1e-10):
    norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
    return x / (norm_factor + eps)


def spatial_average(x, keepdim=True):
    return x.mean([2, 3], keepdim=keepdim)


def weights_init(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm") != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)


def weights_init_conv(m):
    if hasattr(m, "conv"):
        m = m.conv
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm") != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)


class NLayerDiscriminator(nn.Module):
    """Defines a PatchGAN discriminator as in Pix2Pix
    --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
    """

    def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
        """Construct a PatchGAN discriminator
        Parameters:
            input_nc (int)  -- the number of channels in input images
            ndf (int)       -- the number of filters in the last conv layer
            n_layers (int)  -- the number of conv layers in the discriminator
            norm_layer      -- normalization layer
        """
        super(NLayerDiscriminator, self).__init__()
        if not use_actnorm:
            norm_layer = nn.BatchNorm2d
        else:
            norm_layer = ActNorm
        if type(norm_layer) == functools.partial:  # no need to use bias as BatchNorm2d has affine parameters
            use_bias = norm_layer.func != nn.BatchNorm2d
        else:
            use_bias = norm_layer != nn.BatchNorm2d

        kw = 4
        padw = 1
        sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, n_layers):  # gradually increase the number of filters
            nf_mult_prev = nf_mult
            nf_mult = min(2**n, 8)
            sequence += [
                nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
                norm_layer(ndf * nf_mult),
                nn.LeakyReLU(0.2, True),
            ]

        nf_mult_prev = nf_mult
        nf_mult = min(2**n_layers, 8)
        sequence += [
            nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
            norm_layer(ndf * nf_mult),
            nn.LeakyReLU(0.2, True),
        ]

        sequence += [
            nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)
        ]  # output 1 channel prediction map
        self.main = nn.Sequential(*sequence)

    def forward(self, input):
        """Standard forward."""
        return self.main(input)


class NLayerDiscriminator3D(nn.Module):
    """Defines a 3D PatchGAN discriminator as in Pix2Pix but for 3D inputs."""

    def __init__(self, input_nc=1, ndf=64, n_layers=3, use_actnorm=False):
        """
        Construct a 3D PatchGAN discriminator

        Parameters:
            input_nc (int)  -- the number of channels in input volumes
            ndf (int)       -- the number of filters in the last conv layer
            n_layers (int)  -- the number of conv layers in the discriminator
            use_actnorm (bool) -- flag to use actnorm instead of batchnorm
        """
        super(NLayerDiscriminator3D, self).__init__()
        if not use_actnorm:
            norm_layer = nn.BatchNorm3d
        else:
            raise NotImplementedError("Not implemented.")
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func != nn.BatchNorm3d
        else:
            use_bias = norm_layer != nn.BatchNorm3d

        kw = 3
        padw = 1
        sequence = [nn.Conv3d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, n_layers):  # gradually increase the number of filters
            nf_mult_prev = nf_mult
            nf_mult = min(2**n, 8)
            sequence += [
                nn.Conv3d(
                    ndf * nf_mult_prev,
                    ndf * nf_mult,
                    kernel_size=(kw, kw, kw),
                    stride=(2 if n == 1 else 1, 2, 2),
                    padding=padw,
                    bias=use_bias,
                ),
                norm_layer(ndf * nf_mult),
                nn.LeakyReLU(0.2, True),
            ]

        nf_mult_prev = nf_mult
        nf_mult = min(2**n_layers, 8)
        sequence += [
            nn.Conv3d(
                ndf * nf_mult_prev, ndf * nf_mult, kernel_size=(kw, kw, kw), stride=1, padding=padw, bias=use_bias
            ),
            norm_layer(ndf * nf_mult),
            nn.LeakyReLU(0.2, True),
        ]

        sequence += [
            nn.Conv3d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)
        ]  # output 1 channel prediction map
        self.main = nn.Sequential(*sequence)

    def forward(self, input):
        """Standard forward."""
        return self.main(input)


def hinge_d_loss(logits_real, logits_fake):
    loss_real = torch.mean(F.relu(1.0 - logits_real))
    loss_fake = torch.mean(F.relu(1.0 + logits_fake))
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss


def vanilla_d_loss(logits_real, logits_fake):
    d_loss = 0.5 * (
        torch.mean(torch.nn.functional.softplus(-logits_real)) + torch.mean(torch.nn.functional.softplus(logits_fake))
    )
    return d_loss


def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
    assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
    loss_real = torch.mean(F.relu(1.0 - logits_real), dim=[1, 2, 3])
    loss_fake = torch.mean(F.relu(1.0 + logits_fake), dim=[1, 2, 3])
    loss_real = (weights * loss_real).sum() / weights.sum()
    loss_fake = (weights * loss_fake).sum() / weights.sum()
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss


def adopt_weight(weight, global_step, threshold=0, value=0.0):
    if global_step < threshold:
        weight = value
    return weight


def measure_perplexity(predicted_indices, n_embed):
    # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
    # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
    encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
    avg_probs = encodings.mean(0)
    perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
    cluster_use = torch.sum(avg_probs > 0)
    return perplexity, cluster_use


def l1(x, y):
    return torch.abs(x - y)


def l2(x, y):
    return torch.pow((x - y), 2)


class LPIPSWithDiscriminator(nn.Module):
    def __init__(
        self,
        disc_start,
        logvar_init=0.0,
        kl_weight=1.0,
        pixelloss_weight=1.0,
        perceptual_weight=1.0,
        # --- Discriminator Loss ---
        disc_num_layers=3,
        disc_in_channels=3,
        disc_factor=1.0,
        disc_weight=1.0,
        use_actnorm=False,
        disc_conditional=False,
        disc_loss="hinge",
    ):
        super().__init__()
        assert disc_loss in ["hinge", "vanilla"]
        self.kl_weight = kl_weight
        self.pixel_weight = pixelloss_weight
        self.perceptual_loss = LPIPS().eval()
        self.perceptual_weight = perceptual_weight
        self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)

        self.discriminator = NLayerDiscriminator(
            input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm
        ).apply(weights_init)
        self.discriminator_iter_start = disc_start
        self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
        self.disc_factor = disc_factor
        self.discriminator_weight = disc_weight
        self.disc_conditional = disc_conditional

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
        if last_layer is not None:
            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
        else:
            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]

        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
        d_weight = d_weight * self.discriminator_weight
        return d_weight

    def forward(
        self,
        inputs,
        reconstructions,
        posteriors,
        optimizer_idx,
        global_step,
        split="train",
        weights=None,
        last_layer=None,
        cond=None,
    ):
        inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous()
        reconstructions = rearrange(reconstructions, "b c t h w -> (b t) c h w").contiguous()
        rec_loss = torch.abs(inputs - reconstructions)
        if self.perceptual_weight > 0:
            p_loss = self.perceptual_loss(inputs, reconstructions)
            rec_loss = rec_loss + self.perceptual_weight * p_loss
        nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
        weighted_nll_loss = nll_loss
        if weights is not None:
            weighted_nll_loss = weights * nll_loss
        weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
        nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
        kl_loss = posteriors.kl()
        kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]

        # GAN Part
        if optimizer_idx == 0:
            # generator update
            if cond is None:
                assert not self.disc_conditional
                logits_fake = self.discriminator(reconstructions.contiguous())
            else:
                assert self.disc_conditional
                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
            g_loss = -torch.mean(logits_fake)

            if self.disc_factor > 0.0:
                try:
                    d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
                except RuntimeError:
                    assert not self.training
                    d_weight = torch.tensor(0.0)
            else:
                d_weight = torch.tensor(0.0)

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
            log = {
                "{}/total_loss".format(split): loss.clone().detach().mean(),
                "{}/logvar".format(split): self.logvar.detach(),
                "{}/kl_loss".format(split): kl_loss.detach().mean(),
                "{}/nll_loss".format(split): nll_loss.detach().mean(),
                "{}/rec_loss".format(split): rec_loss.detach().mean(),
                "{}/d_weight".format(split): d_weight.detach(),
                "{}/disc_factor".format(split): torch.tensor(disc_factor),
                "{}/g_loss".format(split): g_loss.detach().mean(),
            }
            return loss, log

        if optimizer_idx == 1:
            if cond is None:
                logits_real = self.discriminator(inputs.contiguous().detach())
                logits_fake = self.discriminator(reconstructions.contiguous().detach())
            else:
                logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)

            log = {
                "{}/disc_loss".format(split): d_loss.clone().detach().mean(),
                "{}/logits_real".format(split): logits_real.detach().mean(),
                "{}/logits_fake".format(split): logits_fake.detach().mean(),
            }
            return d_loss, log


class LPIPSWithDiscriminator3D(nn.Module):
    def __init__(
        self,
        disc_start,
        logvar_init=0.0,
        kl_weight=1.0,
        pixelloss_weight=1.0,
        perceptual_weight=1.0,
        # --- Discriminator Loss ---
        disc_num_layers=3,
        disc_in_channels=3,
        disc_factor=1.0,
        disc_weight=1.0,
        use_actnorm=False,
        disc_conditional=False,
        disc_loss="hinge",
    ):
        super().__init__()
        assert disc_loss in ["hinge", "vanilla"]
        self.kl_weight = kl_weight
        self.pixel_weight = pixelloss_weight
        self.perceptual_loss = LPIPS().eval()
        self.perceptual_weight = perceptual_weight
        self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)

        self.discriminator = NLayerDiscriminator3D(
            input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm
        ).apply(weights_init)
        self.discriminator_iter_start = disc_start
        self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
        self.disc_factor = disc_factor
        self.discriminator_weight = disc_weight
        self.disc_conditional = disc_conditional

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
        if last_layer is not None:
            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
        else:
            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]

        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
        d_weight = d_weight * self.discriminator_weight
        return d_weight

    def forward(
        self,
        inputs,
        reconstructions,
        posteriors,
        optimizer_idx,
        global_step,
        split="train",
        weights=None,
        last_layer=None,
        cond=None,
    ):
        t = inputs.shape[2]
        inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous()
        reconstructions = rearrange(reconstructions, "b c t h w -> (b t) c h w").contiguous()
        rec_loss = torch.abs(inputs - reconstructions)
        if self.perceptual_weight > 0:
            p_loss = self.perceptual_loss(inputs, reconstructions)
            rec_loss = rec_loss + self.perceptual_weight * p_loss
        nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
        weighted_nll_loss = nll_loss
        if weights is not None:
            weighted_nll_loss = weights * nll_loss
        weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
        nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
        kl_loss = posteriors.kl()
        kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
        inputs = rearrange(inputs, "(b t) c h w -> b c t h w", t=t).contiguous()
        reconstructions = rearrange(reconstructions, "(b t) c h w -> b c t h w", t=t).contiguous()
        # GAN Part
        if optimizer_idx == 0:
            # generator update
            if cond is None:
                assert not self.disc_conditional
                logits_fake = self.discriminator(reconstructions)
            else:
                assert self.disc_conditional
                logits_fake = self.discriminator(torch.cat((reconstructions, cond), dim=1))
            g_loss = -torch.mean(logits_fake)

            if self.disc_factor > 0.0:
                try:
                    d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
                except RuntimeError as e:
                    assert not self.training, print(e)
                    d_weight = torch.tensor(0.0)
            else:
                d_weight = torch.tensor(0.0)

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
            log = {
                "{}/total_loss".format(split): loss.clone().detach().mean(),
                "{}/logvar".format(split): self.logvar.detach(),
                "{}/kl_loss".format(split): kl_loss.detach().mean(),
                "{}/nll_loss".format(split): nll_loss.detach().mean(),
                "{}/rec_loss".format(split): rec_loss.detach().mean(),
                "{}/d_weight".format(split): d_weight.detach(),
                "{}/disc_factor".format(split): torch.tensor(disc_factor),
                "{}/g_loss".format(split): g_loss.detach().mean(),
            }
            return loss, log

        if optimizer_idx == 1:
            if cond is None:
                logits_real = self.discriminator(inputs.contiguous().detach())
                logits_fake = self.discriminator(reconstructions.contiguous().detach())
            else:
                logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)

            log = {
                "{}/disc_loss".format(split): d_loss.clone().detach().mean(),
                "{}/logits_real".format(split): logits_real.detach().mean(),
                "{}/logits_fake".format(split): logits_fake.detach().mean(),
            }
            return d_loss, log


class SimpleLPIPS(nn.Module):
    def __init__(
        self,
        logvar_init=0.0,
        kl_weight=1.0,
        pixelloss_weight=1.0,
        perceptual_weight=1.0,
        disc_loss="hinge",
    ):
        super().__init__()
        assert disc_loss in ["hinge", "vanilla"]
        self.kl_weight = kl_weight
        self.pixel_weight = pixelloss_weight
        self.perceptual_loss = LPIPS().eval()
        self.perceptual_weight = perceptual_weight
        self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)

    def forward(
        self,
        inputs,
        reconstructions,
        posteriors,
        split="train",
        weights=None,
    ):
        inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous()
        reconstructions = rearrange(reconstructions, "b c t h w -> (b t) c h w").contiguous()
        rec_loss = torch.abs(inputs - reconstructions)
        if self.perceptual_weight > 0:
            p_loss = self.perceptual_loss(inputs, reconstructions)
            rec_loss = rec_loss + self.perceptual_weight * p_loss
        nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
        weighted_nll_loss = nll_loss
        if weights is not None:
            weighted_nll_loss = weights * nll_loss
        weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
        nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
        kl_loss = posteriors.kl()
        kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
        loss = weighted_nll_loss + self.kl_weight * kl_loss
        log = {
            "{}/total_loss".format(split): loss.clone().detach().mean(),
            "{}/logvar".format(split): self.logvar.detach(),
            "{}/kl_loss".format(split): kl_loss.detach().mean(),
            "{}/nll_loss".format(split): nll_loss.detach().mean(),
            "{}/rec_loss".format(split): rec_loss.detach().mean(),
        }
        if self.perceptual_weight > 0:
            log.update({"{}/p_loss".format(split): p_loss.detach().mean()})
        return loss, log