File size: 11,368 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Adapted from OpenSora

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# OpenSora: https://github.com/hpcaitech/Open-Sora
# --------------------------------------------------------

import html
import os
import re

import ftfy
import torch
from transformers import AutoTokenizer, T5EncoderModel

os.environ["TOKENIZERS_PARALLELISM"] = "true"


class T5Embedder:
    available_models = ["DeepFloyd/t5-v1_1-xxl"]

    def __init__(
        self,
        device,
        from_pretrained=None,
        *,
        cache_dir=None,
        hf_token=None,
        use_text_preprocessing=True,
        t5_model_kwargs=None,
        torch_dtype=None,
        use_offload_folder=None,
        model_max_length=120,
        local_files_only=False,
    ):
        self.device = torch.device(device)
        self.torch_dtype = torch_dtype or torch.bfloat16
        self.cache_dir = cache_dir

        if t5_model_kwargs is None:
            t5_model_kwargs = {
                "low_cpu_mem_usage": True,
                "torch_dtype": self.torch_dtype,
            }

            if use_offload_folder is not None:
                t5_model_kwargs["offload_folder"] = use_offload_folder
                t5_model_kwargs["device_map"] = {
                    "shared": self.device,
                    "encoder.embed_tokens": self.device,
                    "encoder.block.0": self.device,
                    "encoder.block.1": self.device,
                    "encoder.block.2": self.device,
                    "encoder.block.3": self.device,
                    "encoder.block.4": self.device,
                    "encoder.block.5": self.device,
                    "encoder.block.6": self.device,
                    "encoder.block.7": self.device,
                    "encoder.block.8": self.device,
                    "encoder.block.9": self.device,
                    "encoder.block.10": self.device,
                    "encoder.block.11": self.device,
                    "encoder.block.12": "disk",
                    "encoder.block.13": "disk",
                    "encoder.block.14": "disk",
                    "encoder.block.15": "disk",
                    "encoder.block.16": "disk",
                    "encoder.block.17": "disk",
                    "encoder.block.18": "disk",
                    "encoder.block.19": "disk",
                    "encoder.block.20": "disk",
                    "encoder.block.21": "disk",
                    "encoder.block.22": "disk",
                    "encoder.block.23": "disk",
                    "encoder.final_layer_norm": "disk",
                    "encoder.dropout": "disk",
                }
            else:
                t5_model_kwargs["device_map"] = {
                    "shared": self.device,
                    "encoder": self.device,
                }

        self.use_text_preprocessing = use_text_preprocessing
        self.hf_token = hf_token

        assert from_pretrained in self.available_models
        self.tokenizer = AutoTokenizer.from_pretrained(
            from_pretrained,
            cache_dir=cache_dir,
            local_files_only=local_files_only,
        )
        self.model = T5EncoderModel.from_pretrained(
            from_pretrained,
            cache_dir=cache_dir,
            local_files_only=local_files_only,
            **t5_model_kwargs,
        ).eval()
        self.model_max_length = model_max_length

    def get_text_embeddings(self, texts):
        text_tokens_and_mask = self.tokenizer(
            texts,
            max_length=self.model_max_length,
            padding="max_length",
            truncation=True,
            return_attention_mask=True,
            add_special_tokens=True,
            return_tensors="pt",
        )

        input_ids = text_tokens_and_mask["input_ids"].to(self.device)
        attention_mask = text_tokens_and_mask["attention_mask"].to(self.device)
        with torch.no_grad():
            text_encoder_embs = self.model(
                input_ids=input_ids,
                attention_mask=attention_mask,
            )["last_hidden_state"].detach()
        return text_encoder_embs, attention_mask


class T5Encoder:
    def __init__(
        self,
        from_pretrained=None,
        model_max_length=120,
        device="cuda",
        dtype=torch.float,
        cache_dir=None,
        shardformer=False,
        local_files_only=False,
    ):
        assert from_pretrained is not None, "Please specify the path to the T5 model"

        self.t5 = T5Embedder(
            device=device,
            torch_dtype=dtype,
            from_pretrained=from_pretrained,
            cache_dir=cache_dir,
            model_max_length=model_max_length,
            local_files_only=local_files_only,
        )
        self.t5.model.to(dtype=dtype)
        self.y_embedder = None

        self.model_max_length = model_max_length
        self.output_dim = self.t5.model.config.d_model
        self.dtype = dtype

        if shardformer:
            self.shardformer_t5()

    def eval(self):
        self.t5.model.eval()

    def to(self, device):
        self.t5.model.to(device)

    def shardformer_t5(self):
        from colossalai.shardformer import ShardConfig, ShardFormer

        from videosys.core.shardformer.t5.policy import T5EncoderPolicy
        from videosys.utils.utils import requires_grad

        shard_config = ShardConfig(
            tensor_parallel_process_group=None,
            pipeline_stage_manager=None,
            enable_tensor_parallelism=False,
            enable_fused_normalization=False,
            enable_flash_attention=False,
            enable_jit_fused=True,
            enable_sequence_parallelism=False,
            enable_sequence_overlap=False,
        )
        shard_former = ShardFormer(shard_config=shard_config)
        optim_model, _ = shard_former.optimize(self.t5.model, policy=T5EncoderPolicy())
        self.t5.model = optim_model.to(self.dtype)

        # ensure the weights are frozen
        requires_grad(self.t5.model, False)

    def encode(self, text):
        caption_embs, emb_masks = self.t5.get_text_embeddings(text)
        caption_embs = caption_embs[:, None]
        return dict(y=caption_embs, mask=emb_masks)

    def null(self, n):
        null_y = self.y_embedder.y_embedding[None].repeat(n, 1, 1)[:, None]
        return null_y


def basic_clean(text):
    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()


BAD_PUNCT_REGEX = re.compile(
    r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
)  # noqa


def clean_caption(caption):
    import urllib.parse as ul

    from bs4 import BeautifulSoup

    caption = str(caption)
    caption = ul.unquote_plus(caption)
    caption = caption.strip().lower()
    caption = re.sub("<person>", "person", caption)
    # urls:
    caption = re.sub(
        r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
        "",
        caption,
    )  # regex for urls
    caption = re.sub(
        r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
        "",
        caption,
    )  # regex for urls
    # html:
    caption = BeautifulSoup(caption, features="html.parser").text

    # @<nickname>
    caption = re.sub(r"@[\w\d]+\b", "", caption)

    # 31C0—31EF CJK Strokes
    # 31F0—31FF Katakana Phonetic Extensions
    # 3200—32FF Enclosed CJK Letters and Months
    # 3300—33FF CJK Compatibility
    # 3400—4DBF CJK Unified Ideographs Extension A
    # 4DC0—4DFF Yijing Hexagram Symbols
    # 4E00—9FFF CJK Unified Ideographs
    caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
    caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
    caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
    caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
    caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
    caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
    caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
    #######################################################

    # все виды тире / all types of dash --> "-"
    caption = re.sub(
        r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",  # noqa
        "-",
        caption,
    )

    # кавычки к одному стандарту
    caption = re.sub(r"[`´«»“”¨]", '"', caption)
    caption = re.sub(r"[‘’]", "'", caption)

    # &quot;
    caption = re.sub(r"&quot;?", "", caption)
    # &amp
    caption = re.sub(r"&amp", "", caption)

    # ip adresses:
    caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)

    # article ids:
    caption = re.sub(r"\d:\d\d\s+$", "", caption)

    # \n
    caption = re.sub(r"\\n", " ", caption)

    # "#123"
    caption = re.sub(r"#\d{1,3}\b", "", caption)
    # "#12345.."
    caption = re.sub(r"#\d{5,}\b", "", caption)
    # "123456.."
    caption = re.sub(r"\b\d{6,}\b", "", caption)
    # filenames:
    caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)

    #
    caption = re.sub(r"[\"\']{2,}", r'"', caption)  # """AUSVERKAUFT"""
    caption = re.sub(r"[\.]{2,}", r" ", caption)  # """AUSVERKAUFT"""

    caption = re.sub(BAD_PUNCT_REGEX, r" ", caption)  # ***AUSVERKAUFT***, #AUSVERKAUFT
    caption = re.sub(r"\s+\.\s+", r" ", caption)  # " . "

    # this-is-my-cute-cat / this_is_my_cute_cat
    regex2 = re.compile(r"(?:\-|\_)")
    if len(re.findall(regex2, caption)) > 3:
        caption = re.sub(regex2, " ", caption)

    caption = basic_clean(caption)

    caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption)  # jc6640
    caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption)  # jc6640vc
    caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption)  # 6640vc231

    caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
    caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
    caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
    caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
    caption = re.sub(r"\bpage\s+\d+\b", "", caption)

    caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption)  # j2d1a2a...

    caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)

    caption = re.sub(r"\b\s+\:\s+", r": ", caption)
    caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
    caption = re.sub(r"\s+", " ", caption)

    caption.strip()

    caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
    caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
    caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
    caption = re.sub(r"^\.\S+$", "", caption)

    return caption.strip()


def text_preprocessing(text, use_text_preprocessing: bool = True):
    if use_text_preprocessing:
        # The exact text cleaning as was in the training stage:
        text = clean_caption(text)
        text = clean_caption(text)
        return text
    else:
        return text.lower().strip()