Spaces:
Sleeping
Sleeping
File size: 40,026 Bytes
07c6a04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 |
# Adapted from CogVideo
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# CogVideo: https://github.com/THUDM/CogVideo
# diffusers: https://github.com/huggingface/diffusers
# --------------------------------------------------------
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.activations import get_activation
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import logging
from diffusers.utils.accelerate_utils import apply_forward_hook
from .modules import CogVideoXDownsample3D, CogVideoXUpsample3D
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class CogVideoXSafeConv3d(nn.Conv3d):
"""
A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model.
"""
def forward(self, input: torch.Tensor) -> torch.Tensor:
memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024**3
# Set to 2GB, suitable for CuDNN
if memory_count > 2:
kernel_size = self.kernel_size[0]
part_num = int(memory_count / 2) + 1
input_chunks = torch.chunk(input, part_num, dim=2)
if kernel_size > 1:
input_chunks = [input_chunks[0]] + [
torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2)
for i in range(1, len(input_chunks))
]
output_chunks = []
for input_chunk in input_chunks:
output_chunks.append(super().forward(input_chunk))
output = torch.cat(output_chunks, dim=2)
return output
else:
return super().forward(input)
class CogVideoXCausalConv3d(nn.Module):
r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model.
Args:
in_channels (int): Number of channels in the input tensor.
out_channels (int): Number of output channels.
kernel_size (Union[int, Tuple[int, int, int]]): Size of the convolutional kernel.
stride (int, optional): Stride of the convolution. Default is 1.
dilation (int, optional): Dilation rate of the convolution. Default is 1.
pad_mode (str, optional): Padding mode. Default is "constant".
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]],
stride: int = 1,
dilation: int = 1,
pad_mode: str = "constant",
):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size,) * 3
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
self.pad_mode = pad_mode
time_pad = dilation * (time_kernel_size - 1) + (1 - stride)
height_pad = height_kernel_size // 2
width_pad = width_kernel_size // 2
self.height_pad = height_pad
self.width_pad = width_pad
self.time_pad = time_pad
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0)
self.temporal_dim = 2
self.time_kernel_size = time_kernel_size
stride = (stride, 1, 1)
dilation = (dilation, 1, 1)
self.conv = CogVideoXSafeConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
)
self.conv_cache = None
def fake_context_parallel_forward(self, inputs: torch.Tensor) -> torch.Tensor:
dim = self.temporal_dim
kernel_size = self.time_kernel_size
if kernel_size == 1:
return inputs
inputs = inputs.transpose(0, dim)
if self.conv_cache is not None:
inputs = torch.cat([self.conv_cache.transpose(0, dim).to(inputs.device), inputs], dim=0)
else:
inputs = torch.cat([inputs[:1]] * (kernel_size - 1) + [inputs], dim=0)
inputs = inputs.transpose(0, dim).contiguous()
return inputs
def _clear_fake_context_parallel_cache(self):
del self.conv_cache
self.conv_cache = None
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
input_parallel = self.fake_context_parallel_forward(inputs)
self._clear_fake_context_parallel_cache()
self.conv_cache = input_parallel[:, :, -self.time_kernel_size + 1 :].contiguous().detach().clone().cpu()
padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad)
input_parallel = F.pad(input_parallel, padding_2d, mode="constant", value=0)
output_parallel = self.conv(input_parallel)
output = output_parallel
return output
class CogVideoXSpatialNorm3D(nn.Module):
r"""
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. This implementation is specific
to 3D-video like data.
CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model.
Args:
f_channels (`int`):
The number of channels for input to group normalization layer, and output of the spatial norm layer.
zq_channels (`int`):
The number of channels for the quantized vector as described in the paper.
"""
def __init__(
self,
f_channels: int,
zq_channels: int,
groups: int = 32,
):
super().__init__()
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True)
self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor:
if f.shape[2] > 1 and f.shape[2] % 2 == 1:
f_first, f_rest = f[:, :, :1], f[:, :, 1:]
f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:]
z_first, z_rest = zq[:, :, :1], zq[:, :, 1:]
z_first = F.interpolate(z_first, size=f_first_size)
z_rest = F.interpolate(z_rest, size=f_rest_size)
zq = torch.cat([z_first, z_rest], dim=2)
else:
zq = F.interpolate(zq, size=f.shape[-3:])
norm_f = self.norm_layer(f)
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
return new_f
class CogVideoXResnetBlock3D(nn.Module):
r"""
A 3D ResNet block used in the CogVideoX model.
Args:
in_channels (int): Number of input channels.
out_channels (Optional[int], optional):
Number of output channels. If None, defaults to `in_channels`. Default is None.
dropout (float, optional): Dropout rate. Default is 0.0.
temb_channels (int, optional): Number of time embedding channels. Default is 512.
groups (int, optional): Number of groups for group normalization. Default is 32.
eps (float, optional): Epsilon value for normalization layers. Default is 1e-6.
non_linearity (str, optional): Activation function to use. Default is "swish".
conv_shortcut (bool, optional): If True, use a convolutional shortcut. Default is False.
spatial_norm_dim (Optional[int], optional): Dimension of the spatial normalization. Default is None.
pad_mode (str, optional): Padding mode. Default is "first".
"""
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
dropout: float = 0.0,
temb_channels: int = 512,
groups: int = 32,
eps: float = 1e-6,
non_linearity: str = "swish",
conv_shortcut: bool = False,
spatial_norm_dim: Optional[int] = None,
pad_mode: str = "first",
):
super().__init__()
out_channels = out_channels or in_channels
self.in_channels = in_channels
self.out_channels = out_channels
self.nonlinearity = get_activation(non_linearity)
self.use_conv_shortcut = conv_shortcut
if spatial_norm_dim is None:
self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps)
self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps)
else:
self.norm1 = CogVideoXSpatialNorm3D(
f_channels=in_channels,
zq_channels=spatial_norm_dim,
groups=groups,
)
self.norm2 = CogVideoXSpatialNorm3D(
f_channels=out_channels,
zq_channels=spatial_norm_dim,
groups=groups,
)
self.conv1 = CogVideoXCausalConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
)
if temb_channels > 0:
self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels)
self.dropout = nn.Dropout(dropout)
self.conv2 = CogVideoXCausalConv3d(
in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = CogVideoXCausalConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
)
else:
self.conv_shortcut = CogVideoXSafeConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0
)
def forward(
self,
inputs: torch.Tensor,
temb: Optional[torch.Tensor] = None,
zq: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = inputs
if zq is not None:
hidden_states = self.norm1(hidden_states, zq)
else:
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
if temb is not None:
hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None]
if zq is not None:
hidden_states = self.norm2(hidden_states, zq)
else:
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
inputs = self.conv_shortcut(inputs)
hidden_states = hidden_states + inputs
return hidden_states
class CogVideoXDownBlock3D(nn.Module):
r"""
A downsampling block used in the CogVideoX model.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
temb_channels (int): Number of time embedding channels.
dropout (float, optional): Dropout rate. Default is 0.0.
num_layers (int, optional): Number of layers in the block. Default is 1.
resnet_eps (float, optional): Epsilon value for the ResNet layers. Default is 1e-6.
resnet_act_fn (str, optional): Activation function for the ResNet layers. Default is "swish".
resnet_groups (int, optional): Number of groups for group normalization in the ResNet layers. Default is 32.
add_downsample (bool, optional): If True, add a downsampling layer at the end of the block. Default is True.
downsample_padding (int, optional): Padding for the downsampling layer. Default is 0.
compress_time (bool, optional): If True, apply temporal compression. Default is False.
pad_mode (str, optional): Padding mode. Default is "first".
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
add_downsample: bool = True,
downsample_padding: int = 0,
compress_time: bool = False,
pad_mode: str = "first",
):
super().__init__()
resnets = []
for i in range(num_layers):
in_channel = in_channels if i == 0 else out_channels
resnets.append(
CogVideoXResnetBlock3D(
in_channels=in_channel,
out_channels=out_channels,
dropout=dropout,
temb_channels=temb_channels,
groups=resnet_groups,
eps=resnet_eps,
non_linearity=resnet_act_fn,
pad_mode=pad_mode,
)
)
self.resnets = nn.ModuleList(resnets)
self.downsamplers = None
if add_downsample:
self.downsamplers = nn.ModuleList(
[
CogVideoXDownsample3D(
out_channels, out_channels, padding=downsample_padding, compress_time=compress_time
)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
zq: Optional[torch.Tensor] = None,
) -> torch.Tensor:
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, zq
)
else:
hidden_states = resnet(hidden_states, temb, zq)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
return hidden_states
class CogVideoXMidBlock3D(nn.Module):
r"""
A middle block used in the CogVideoX model.
Args:
in_channels (int): Number of input channels.
temb_channels (int): Number of time embedding channels.
dropout (float, optional): Dropout rate. Default is 0.0.
num_layers (int, optional): Number of layers in the block. Default is 1.
resnet_eps (float, optional): Epsilon value for the ResNet layers. Default is 1e-6.
resnet_act_fn (str, optional): Activation function for the ResNet layers. Default is "swish".
resnet_groups (int, optional): Number of groups for group normalization in the ResNet layers. Default is 32.
spatial_norm_dim (Optional[int], optional): Dimension of the spatial normalization. Default is None.
pad_mode (str, optional): Padding mode. Default is "first".
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
spatial_norm_dim: Optional[int] = None,
pad_mode: str = "first",
):
super().__init__()
resnets = []
for _ in range(num_layers):
resnets.append(
CogVideoXResnetBlock3D(
in_channels=in_channels,
out_channels=in_channels,
dropout=dropout,
temb_channels=temb_channels,
groups=resnet_groups,
eps=resnet_eps,
spatial_norm_dim=spatial_norm_dim,
non_linearity=resnet_act_fn,
pad_mode=pad_mode,
)
)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
zq: Optional[torch.Tensor] = None,
) -> torch.Tensor:
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, zq
)
else:
hidden_states = resnet(hidden_states, temb, zq)
return hidden_states
class CogVideoXUpBlock3D(nn.Module):
r"""
An upsampling block used in the CogVideoX model.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
temb_channels (int): Number of time embedding channels.
dropout (float, optional): Dropout rate. Default is 0.0.
num_layers (int, optional): Number of layers in the block. Default is 1.
resnet_eps (float, optional): Epsilon value for the ResNet layers. Default is 1e-6.
resnet_act_fn (str, optional): Activation function for the ResNet layers. Default is "swish".
resnet_groups (int, optional): Number of groups for group normalization in the ResNet layers. Default is 32.
spatial_norm_dim (int, optional): Dimension of the spatial normalization. Default is 16.
add_upsample (bool, optional): If True, add an upsampling layer at the end of the block. Default is True.
upsample_padding (int, optional): Padding for the upsampling layer. Default is 1.
compress_time (bool, optional): If True, apply temporal compression. Default is False.
pad_mode (str, optional): Padding mode. Default is "first".
"""
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
spatial_norm_dim: int = 16,
add_upsample: bool = True,
upsample_padding: int = 1,
compress_time: bool = False,
pad_mode: str = "first",
):
super().__init__()
resnets = []
for i in range(num_layers):
in_channel = in_channels if i == 0 else out_channels
resnets.append(
CogVideoXResnetBlock3D(
in_channels=in_channel,
out_channels=out_channels,
dropout=dropout,
temb_channels=temb_channels,
groups=resnet_groups,
eps=resnet_eps,
non_linearity=resnet_act_fn,
spatial_norm_dim=spatial_norm_dim,
pad_mode=pad_mode,
)
)
self.resnets = nn.ModuleList(resnets)
self.upsamplers = None
if add_upsample:
self.upsamplers = nn.ModuleList(
[CogVideoXUpsample3D(out_channels, out_channels, padding=upsample_padding, compress_time=compress_time)]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
zq: Optional[torch.Tensor] = None,
) -> torch.Tensor:
r"""Forward method of the `CogVideoXUpBlock3D` class."""
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, zq
)
else:
hidden_states = resnet(hidden_states, temb, zq)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class CogVideoXEncoder3D(nn.Module):
r"""
The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
options.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
The number of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
act_fn (`str`, *optional*, defaults to `"silu"`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
double_z (`bool`, *optional*, defaults to `True`):
Whether to double the number of output channels for the last block.
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int = 3,
out_channels: int = 16,
down_block_types: Tuple[str, ...] = (
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
),
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
layers_per_block: int = 3,
act_fn: str = "silu",
norm_eps: float = 1e-6,
norm_num_groups: int = 32,
dropout: float = 0.0,
pad_mode: str = "first",
temporal_compression_ratio: float = 4,
):
super().__init__()
# log2 of temporal_compress_times
temporal_compress_level = int(np.log2(temporal_compression_ratio))
self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode)
self.down_blocks = nn.ModuleList([])
# down blocks
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
compress_time = i < temporal_compress_level
if down_block_type == "CogVideoXDownBlock3D":
down_block = CogVideoXDownBlock3D(
in_channels=input_channel,
out_channels=output_channel,
temb_channels=0,
dropout=dropout,
num_layers=layers_per_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
add_downsample=not is_final_block,
compress_time=compress_time,
)
else:
raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`")
self.down_blocks.append(down_block)
# mid block
self.mid_block = CogVideoXMidBlock3D(
in_channels=block_out_channels[-1],
temb_channels=0,
dropout=dropout,
num_layers=2,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
pad_mode=pad_mode,
)
self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = CogVideoXCausalConv3d(
block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode
)
self.gradient_checkpointing = False
def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
r"""The forward method of the `CogVideoXEncoder3D` class."""
hidden_states = self.conv_in(sample)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
# 1. Down
for down_block in self.down_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(down_block), hidden_states, temb, None
)
# 2. Mid
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), hidden_states, temb, None
)
else:
# 1. Down
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states, temb, None)
# 2. Mid
hidden_states = self.mid_block(hidden_states, temb, None)
# 3. Post-process
hidden_states = self.norm_out(hidden_states)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class CogVideoXDecoder3D(nn.Module):
r"""
The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output
sample.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
The number of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
act_fn (`str`, *optional*, defaults to `"silu"`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
norm_type (`str`, *optional*, defaults to `"group"`):
The normalization type to use. Can be either `"group"` or `"spatial"`.
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int = 16,
out_channels: int = 3,
up_block_types: Tuple[str, ...] = (
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
),
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
layers_per_block: int = 3,
act_fn: str = "silu",
norm_eps: float = 1e-6,
norm_num_groups: int = 32,
dropout: float = 0.0,
pad_mode: str = "first",
temporal_compression_ratio: float = 4,
):
super().__init__()
reversed_block_out_channels = list(reversed(block_out_channels))
self.conv_in = CogVideoXCausalConv3d(
in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode
)
# mid block
self.mid_block = CogVideoXMidBlock3D(
in_channels=reversed_block_out_channels[0],
temb_channels=0,
num_layers=2,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
spatial_norm_dim=in_channels,
pad_mode=pad_mode,
)
# up blocks
self.up_blocks = nn.ModuleList([])
output_channel = reversed_block_out_channels[0]
temporal_compress_level = int(np.log2(temporal_compression_ratio))
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
compress_time = i < temporal_compress_level
if up_block_type == "CogVideoXUpBlock3D":
up_block = CogVideoXUpBlock3D(
in_channels=prev_output_channel,
out_channels=output_channel,
temb_channels=0,
dropout=dropout,
num_layers=layers_per_block + 1,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
spatial_norm_dim=in_channels,
add_upsample=not is_final_block,
compress_time=compress_time,
pad_mode=pad_mode,
)
prev_output_channel = output_channel
else:
raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`")
self.up_blocks.append(up_block)
self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups)
self.conv_act = nn.SiLU()
self.conv_out = CogVideoXCausalConv3d(
reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode
)
self.gradient_checkpointing = False
def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
r"""The forward method of the `CogVideoXDecoder3D` class."""
hidden_states = self.conv_in(sample)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
# 1. Mid
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), hidden_states, temb, sample
)
# 2. Up
for up_block in self.up_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block), hidden_states, temb, sample
)
else:
# 1. Mid
hidden_states = self.mid_block(hidden_states, temb, sample)
# 2. Up
for up_block in self.up_blocks:
hidden_states = up_block(hidden_states, temb, sample)
# 3. Post-process
hidden_states = self.norm_out(hidden_states, sample)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
[CogVideoX](https://github.com/THUDM/CogVideo).
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["CogVideoXResnetBlock3D"]
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = (
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
"CogVideoXDownBlock3D",
),
up_block_types: Tuple[str] = (
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
"CogVideoXUpBlock3D",
),
block_out_channels: Tuple[int] = (128, 256, 256, 512),
latent_channels: int = 16,
layers_per_block: int = 3,
act_fn: str = "silu",
norm_eps: float = 1e-6,
norm_num_groups: int = 32,
temporal_compression_ratio: float = 4,
sample_size: int = 256,
scaling_factor: float = 1.15258426,
shift_factor: Optional[float] = None,
latents_mean: Optional[Tuple[float]] = None,
latents_std: Optional[Tuple[float]] = None,
force_upcast: float = True,
use_quant_conv: bool = False,
use_post_quant_conv: bool = False,
):
super().__init__()
self.encoder = CogVideoXEncoder3D(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_eps=norm_eps,
norm_num_groups=norm_num_groups,
temporal_compression_ratio=temporal_compression_ratio,
)
self.decoder = CogVideoXDecoder3D(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_eps=norm_eps,
norm_num_groups=norm_num_groups,
temporal_compression_ratio=temporal_compression_ratio,
)
self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None
self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None
self.use_slicing = False
self.use_tiling = False
self.tile_sample_min_size = self.config.sample_size
sample_size = (
self.config.sample_size[0]
if isinstance(self.config.sample_size, (list, tuple))
else self.config.sample_size
)
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
self.tile_overlap_factor = 0.25
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)):
module.gradient_checkpointing = value
def clear_fake_context_parallel_cache(self):
for name, module in self.named_modules():
if isinstance(module, CogVideoXCausalConv3d):
logger.debug(f"Clearing fake Context Parallel cache for layer: {name}")
module._clear_fake_context_parallel_cache()
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
h = self.encoder(x)
if self.quant_conv is not None:
h = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
@apply_forward_hook
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.post_quant_conv is not None:
z = self.post_quant_conv(z)
dec = self.decoder(z)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[torch.Tensor, torch.Tensor]:
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z)
if not return_dict:
return (dec,)
return dec
|