Spaces:
Runtime error
Runtime error
import sys | |
import torch | |
from peft import PeftModel, PeftModelForCausalLM, LoraConfig | |
import transformers | |
import gradio as gr | |
import argparse | |
import warnings | |
import os | |
from utils import StreamPeftGenerationMixin,StreamLlamaForCausalLM | |
# assert ( | |
# "LlamaTokenizer" in transformers._import_structure["models.llama"] | |
# ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" | |
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, default="/model/13B_hf") | |
parser.add_argument("--lora_path", type=str, default="checkpoint-3000") | |
parser.add_argument("--use_typewriter", type=int, default=1) | |
parser.add_argument("--use_local", type=int, default=1) | |
args = parser.parse_args() | |
print(args) | |
tokenizer = LlamaTokenizer.from_pretrained(args.model_path) | |
LOAD_8BIT = True | |
BASE_MODEL = args.model_path | |
LORA_WEIGHTS = args.lora_path | |
# fix the path for local checkpoint | |
lora_bin_path = os.path.join(args.lora_path, "adapter_model.bin") | |
print(lora_bin_path) | |
if not os.path.exists(lora_bin_path) and args.use_local: | |
pytorch_bin_path = os.path.join(args.lora_path, "pytorch_model.bin") | |
print(pytorch_bin_path) | |
if os.path.exists(pytorch_bin_path): | |
os.rename(pytorch_bin_path, lora_bin_path) | |
warnings.warn( | |
"The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'" | |
) | |
else: | |
assert ('Checkpoint is not Found!') | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
try: | |
if torch.backends.mps.is_available(): | |
device = "mps" | |
except: | |
pass | |
if device == "cuda": | |
model = LlamaForCausalLM.from_pretrained( | |
BASE_MODEL, | |
load_in_8bit=LOAD_8BIT, | |
torch_dtype=torch.float16, | |
device_map="auto", #device_map={"": 0}, | |
) | |
model = StreamPeftGenerationMixin.from_pretrained( | |
model, LORA_WEIGHTS, torch_dtype=torch.float16, device_map="auto", #device_map={"": 0} | |
) | |
elif device == "mps": | |
model = LlamaForCausalLM.from_pretrained( | |
BASE_MODEL, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
model = StreamPeftGenerationMixin.from_pretrained( | |
model, | |
LORA_WEIGHTS, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
else: | |
model = LlamaForCausalLM.from_pretrained( | |
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True | |
) | |
model = StreamPeftGenerationMixin.from_pretrained( | |
model, | |
LORA_WEIGHTS, | |
device_map={"": device}, | |
) | |
def generate_prompt(instruction, input=None): | |
if input: | |
return f"""你是一个乐于助人的中文助手,请你回答一下以下问题 | |
### Instruction: | |
{instruction} | |
### Input: | |
{input} | |
### Response:""" | |
else: | |
return f"""你是一个乐于助人的中文助手,请你回答一下以下问题 | |
### Instruction: | |
{instruction} | |
### Response:""" | |
if not LOAD_8BIT: | |
model.half() # seems to fix bugs for some users. | |
model.eval() | |
if torch.__version__ >= "2" and sys.platform != "win32": | |
model = torch.compile(model) | |
def evaluate( | |
input, | |
temperature=0.1, | |
top_p=0.75, | |
top_k=40, | |
num_beams=4, | |
max_new_tokens=128, | |
min_new_tokens=1, | |
repetition_penalty=2.0, | |
**kwargs, | |
): | |
prompt = generate_prompt(input) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"].to(device) | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
num_beams=num_beams, | |
bos_token_id=1, | |
eos_token_id=2, | |
pad_token_id=0, | |
max_new_tokens=max_new_tokens, # max_length=max_new_tokens+input_sequence | |
min_new_tokens=min_new_tokens, # min_length=min_new_tokens+input_sequence | |
**kwargs, | |
) | |
with torch.no_grad(): | |
if args.use_typewriter: | |
for generation_output in model.stream_generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=False, | |
repetition_penalty=float(repetition_penalty), | |
): | |
outputs = tokenizer.batch_decode(generation_output) | |
show_text = "\n--------------------------------------------\n".join( | |
[output.split("### Response:")[1].strip().replace('�','')+" ▌" for output in outputs] | |
) | |
# if show_text== '': | |
# yield last_show_text | |
# else: | |
yield show_text | |
yield outputs[0].split("### Response:")[1].strip().replace('�','') | |
else: | |
generation_output = model.generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=False, | |
repetition_penalty=1.3, | |
) | |
output = generation_output.sequences[0] | |
output = tokenizer.decode(output).split("### Response:")[1].strip() | |
print(output) | |
yield output | |
gr.Interface( | |
fn=evaluate, | |
inputs=[ | |
gr.components.Textbox( | |
lines=2, label="Input", placeholder="Tell me about alpacas." | |
), | |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), | |
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), | |
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), | |
gr.components.Slider(minimum=1, maximum=10, step=1, value=4, label="Beams Number"), | |
gr.components.Slider( | |
minimum=1, maximum=2000, step=1, value=256, label="Max New Tokens" | |
), | |
gr.components.Slider( | |
minimum=1, maximum=300, step=1, value=1, label="Min New Tokens" | |
), | |
gr.components.Slider( | |
minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty" | |
), | |
], | |
outputs=[ | |
gr.inputs.Textbox( | |
lines=25, | |
label="Output", | |
) | |
], | |
title="HKLawGPT", | |
description="", | |
).queue().launch(share=True) | |