Spaces:
Runtime error
Runtime error
File size: 12,111 Bytes
fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
from peft import (
prepare_model_for_int8_training,
LoraConfig,
PeftModel,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
)
from transformers import LlamaForCausalLM, LlamaTokenizer, TrainerCallback, GenerationConfig
import os
import sys
import torch
import torch.nn as nn
import bitsandbytes as bnb
from datasets import load_dataset, Dataset
import transformers
from huggingface_hub import snapshot_download
import argparse
import warnings
from tqdm import tqdm
from functools import partial
import utils
import prompt
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
# 0. prepare args and logger
parser = argparse.ArgumentParser()
parser.add_argument("--wandb", action="store_true", default=False)
parser.add_argument("--prompt_type", type=str, default="chat")
parser.add_argument("--data_path", type=str, default="merge.json")
parser.add_argument("--output_path", type=str, default="lora-Vicuna")
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf")
parser.add_argument("--num_epoch", type=int, default=6)
parser.add_argument("--micro_batch", type=int, default=4)
parser.add_argument("--total_batch", type=int, default=128)
parser.add_argument("--log_steps", type=int, default=100)
parser.add_argument("--eval_steps", type=int, default=200)
parser.add_argument("--save_steps", type=int, default=200)
parser.add_argument("--warmup_ratio", type=float, default=0.05)
parser.add_argument("--test_size", type=int, default=200)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
parser.add_argument("--lora_remote_checkpoint", type=str, default=None)
parser.add_argument("--ignore_data_skip", type=bool, default=False)
args = parser.parse_args()
if not args.wandb:
os.environ["WANDB_MODE"] = "disable"
MICRO_BATCH_SIZE = args.micro_batch # this could actually be 5 but i like powers of 2
BATCH_SIZE = args.total_batch
MAX_STEPS = None
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = args.num_epoch
LEARNING_RATE = 3e-4 # the Karpathy constant
CUTOFF_LEN = 2048
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
USE_8bit = True
VAL_SET_SIZE = args.test_size # 2000
TARGET_MODULES = [
"q_proj",
"v_proj",
"k_proj",
"o_proj",
"down_proj",
"gate_proj",
"up_proj",
]
DATA_PATH = args.data_path
OUTPUT_DIR = args.output_path # "lora-Vicuna"
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
print(world_size)
ddp = world_size != 1
if ddp:
print('222')
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
print(GRADIENT_ACCUMULATION_STEPS)
print(world_size)
# GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size
print(1111)
# we must make sure batch_size and gradient_accumulation_steps not changed for resuming training.
if args.resume_from_checkpoint:
old_args_path = os.path.join(args.resume_from_checkpoint, 'training_args.bin')
if os.path.exists(old_args_path):
old_args = torch.load(old_args_path)
print(MICRO_BATCH_SIZE)
print(old_args.per_device_train_batch_size)
print(GRADIENT_ACCUMULATION_STEPS)
print(old_args.gradient_accumulation_steps)
if MICRO_BATCH_SIZE != old_args.per_device_train_batch_size:
raise Exception(
f'current micro batch size {MICRO_BATCH_SIZE} is not equal to the old {old_args.per_device_train_batch_size},'
' This will cause the trainer skips wrong epochs or steps.'
f'please change your micro batch size to {old_args.per_device_train_batch_size}'
' or cancel resuming your training'
)
if GRADIENT_ACCUMULATION_STEPS != old_args.gradient_accumulation_steps:
raise Exception(
f'current total batch {BATCH_SIZE} is not equal to the old {old_args.gradient_accumulation_steps*old_args.per_device_train_batch_size},'
' This will cause the trainer skips wrong epochs or steps.'
f'please change your total batch size to {old_args.gradient_accumulation_steps*old_args.per_device_train_batch_size}'
' or cancel resuming your training'
)
else:
raise Exception(f'{old_args_path} is not exist!')
# checkpoint = os.path.join(args.resume_from_checkpoint, 'pytorch_model.bin')
logger = utils.set_file_logger(__name__,OUTPUT_DIR)
# 1. load dataset
logger.info(f'>>> processing data from {DATA_PATH}')
logger.info(f'>>> using {args}')
train_tokenizer = LlamaTokenizer.from_pretrained(args.model_path, add_eos_token=True)
# assert train_tokenizer.eos_token_id == 2, "Tokenizer eos is wrong!!!"
# unk. we want this to be different from the eos token
train_tokenizer.pad_token_id = 0
# cannot use eos in generation!
# tokenizer.padding_side = "left" # Allow batched inference
test_tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
if args.prompt_type == 'instruct':
PROMPT = prompt.instruct_prompt(train_tokenizer, CUTOFF_LEN)
elif args.prompt_type == 'chat':
PROMPT = prompt.chat_prompt(train_tokenizer,CUTOFF_LEN)
else:
raise Exception('not support')
# check tokenizer
data = load_dataset('json', data_files=DATA_PATH)
import random;start = random.randint(1, 100)
examples = Dataset.from_dict(data['train'][start:start+5]).map(PROMPT.preprocess_train)
for example in examples:
logger.info(f'>>> using prompt {args.prompt_type}, prompt example:\n { train_tokenizer.decode(example["input_ids"]) }')
logger.info(f'>>> tokenizer labels: { train_tokenizer.decode([ 0 if l==-100 else l for l in example["labels"]])}')
logger.info(f'>>> tokenizer example: { example["input_ids"][:10] }...{ example["input_ids"][-10:]}')
# 2. load model and checkpoints
logger.info(f'>>> load model from {args.model_path}')
# if USE_8bit is True:
# assert bnb.__version__ >= '0.37.2', "Please downgrade bitsandbytes's version, for example: pip install bitsandbytes==0.37.2"
model = LlamaForCausalLM.from_pretrained(
args.model_path,
load_in_8bit=USE_8bit,
device_map=device_map,
torch_dtype=torch.float16,
)
if USE_8bit is True:
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=TARGET_MODULES,
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
if args.resume_from_checkpoint:
checkpoint_name = os.path.join(args.resume_from_checkpoint, "pytorch_model.bin")
# adapter_model.bin
if not os.path.exists(checkpoint_name):
pytorch_bin_path = checkpoint_name
checkpoint_name = os.path.join(args.resume_from_checkpoint, "adapter_model.bin")
if os.path.exists(checkpoint_name):
os.rename(checkpoint_name, pytorch_bin_path)
logger.warning("The file name of the lora checkpoint'adapter_model.bin' is replaced with 'pytorch_model.bin'")
else:
args.resume_from_checkpoint = None # So the trainer won't try loading its state
print(checkpoint_name)
# pytorch_model.bin
if os.path.exists(checkpoint_name):
logger.info(f'>>> load lora from {checkpoint_name}')
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
raise Exception(f"Checkpoint {checkpoint_name} not found with resume_from_checkpoint=True!")
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
num_params = param.numel()
# if using DS Zero 3 and the weights are initialized empty
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
all_param += num_params
if param.requires_grad:
trainable_params += num_params
logger.info(f">>> trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}")
# 3. speedup dataset processing by multi-process
# num_proc = (os.cpu_count())
if VAL_SET_SIZE > 0:
train_val = data["train"].train_test_split(test_size=VAL_SET_SIZE, shuffle=True, seed=42)
train_data = train_val["train"].shuffle().map(PROMPT.preprocess_train)
val_data = train_val["test"].shuffle().map(PROMPT.preprocess_train)
else:
train_data = data["train"].shuffle().map(PROMPT.preprocess_train)
val_data = None
now_max_steps = max((len(data["train"]) - VAL_SET_SIZE) // BATCH_SIZE * EPOCHS, EPOCHS)
if args.resume_from_checkpoint:
# the trainer will ignore the state max_steps and caculate max_steps based on epochs,
# so we mannally set the args.max_step to override it.
if args.lora_remote_checkpoint is not None:
snapshot_download(repo_id=args.lora_remote_checkpoint, allow_patterns=["*.pt", "*.bin", "*.json"], local_dir=args.resume_from_checkpoint)
train_state_path = os.path.join(args.resume_from_checkpoint, "trainer_state.json")
if os.path.exists(train_state_path):
import json
base_train_args = json.load(open(train_state_path, 'r'))
base_max_steps = base_train_args["max_steps"]
resume_scale = base_max_steps / now_max_steps
if base_max_steps > now_max_steps:
logger.warning(f"epoch {EPOCHS}:{MAX_STEPS} replace to the base_max_steps {base_max_steps}")
EPOCHS = None
MAX_STEPS = base_max_steps
else:
MAX_STEPS = now_max_steps
assert MAX_STEPS is not None
else:
MAX_STEPS = now_max_steps
# 4. start training
class CustomCallback(TrainerCallback):
def __init__(self, trainer) -> None:
super().__init__()
self.trainer = trainer
self.generation_config = GenerationConfig(
temperature=1.0,
top_p=0.75,
top_k=40,
num_beams=2,
bos_token_id=train_tokenizer.bos_token_id,
eos_token_id=train_tokenizer.eos_token_id,
pad_token_id=train_tokenizer.pad_token_id,
max_new_tokens=1024, # max_length=max_new_tokens+input_sequence
min_new_tokens=1, # min_length=min_new_tokens+input_sequence
bad_words_ids=test_tokenizer(['\n\nUser:','\n\nAssistant:'], add_special_tokens=False).input_ids
)
self.repetition_penalty=1.3
self.logger = utils.set_file_logger('transformers.trainer', trainer.args.output_dir)
def on_log(self, args, state, control, logs, **kwargs):
logger.info(logs)
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_ratio=args.warmup_ratio,
num_train_epochs=EPOCHS,
max_steps=MAX_STEPS,
learning_rate=LEARNING_RATE,
fp16=True,
logging_steps=args.log_steps,
logging_first_step=True, # convenient
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
save_strategy="steps",
eval_steps=args.eval_steps if VAL_SET_SIZE > 0 else None,
save_steps=args.save_steps,
output_dir=OUTPUT_DIR,
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
report_to="wandb" if args.wandb else [],
ignore_data_skip=args.ignore_data_skip,
),
data_collator=PROMPT.data_collator()
)
trainer.add_callback(CustomCallback(trainer))
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
model.save_pretrained(OUTPUT_DIR)
|