File size: 4,262 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from typing import List

from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoTokenizer

import trlx
from trlx.data.configs import (
    ModelConfig,
    OptimizerConfig,
    SchedulerConfig,
    TokenizerConfig,
    TrainConfig,
    TRLConfig,
)
from trlx.models.modeling_ppo import PPOConfig

try:
    import evaluate
except ImportError:
    raise ImportError(
        "To run this example, please install the `evaluate` and `nltk` packages" "by running `pip install evaluate`"
    )

config = TRLConfig(
    train=TrainConfig(
        seq_length=612,
        epochs=100,
        total_steps=100000,
        batch_size=12,
        checkpoint_interval=10000,
        eval_interval=500,
        pipeline="PromptPipeline",
        trainer="AcceleratePPOTrainer",
    ),
    model=ModelConfig(
        model_path="google/flan-t5-large",
        model_arch_type="seq2seq",
        num_layers_unfrozen=2,
    ),
    tokenizer=TokenizerConfig(
        tokenizer_path="google/flan-t5-large",
        truncation_side="right",
    ),
    optimizer=OptimizerConfig(
        name="adamw",
        kwargs={
            "lr": 1.0e-5,
            "betas": [0.9, 0.999],
            "eps": 1.0e-8,
            "weight_decay": 1.0e-6,
        },
    ),
    scheduler=SchedulerConfig(
        name="cosine_annealing",
        kwargs={
            "T_max": 10000,
            "eta_min": 1.0e-6,
        },
    ),
    method=PPOConfig(
        name="PPOConfig",
        num_rollouts=512,
        chunk_size=12,
        ppo_epochs=4,
        init_kl_coef=0.05,
        target=6,
        horizon=10000,
        gamma=0.99,
        lam=0.95,
        cliprange=0.2,
        cliprange_value=0.2,
        vf_coef=1.0,
        scale_reward=None,
        ref_mean=None,
        ref_std=None,
        cliprange_reward=10,
        gen_kwargs={
            "max_new_tokens": 100,
        },
        gen_experience_kwargs={
            "max_new_tokens": 100,
            "do_sample": True,
            "temperature": 1.0,
            "top_k": 50,
            "top_p": 0.95,
        },
    ),
)


meteor = evaluate.load("meteor")  # use meteor as the reward function

if __name__ == "__main__":

    def reward_fn(samples: List[str], prompts: List[str], outputs: List[str]):
        original_summaries = [prompt_label[prompt.strip()] for prompt in prompts]
        scores = [
            meteor.compute(predictions=[output.strip()], references=[original])["meteor"]
            for (original, output) in zip(original_summaries, outputs)
        ]
        return scores

    dataset = load_dataset("cnn_dailymail", "3.0.0", cache_dir="data")

    # take 20,000 samples from the training set as prompts for training
    prompts = dataset["train"]["article"][0:20000]
    summaries = dataset["train"]["highlights"][0:20000]
    prompts = ["Summarize: " + prompt for prompt in prompts]

    # take 1,000 samples from the validation set as prompts for evaluation
    val_prompts = ["Summarize: " + prompt for prompt in dataset["validation"]["article"][0:1000]]
    val_summaries = dataset["validation"]["highlights"][0:1000]

    # make dictionary of prompts and labels to use for reward function
    tokenizer = AutoTokenizer.from_pretrained(config.model.model_path)
    tokenizer.padding_side = "left"
    tokenizer.truncation_side = "right"
    tokenizer.sep_token = "<sep>"
    prompt_label = {}
    max_length = config.train.seq_length - config.method.gen_kwargs["max_new_tokens"]

    for i in tqdm(range(len(prompts))):
        key = tokenizer.decode(
            tokenizer(prompts[i], truncation=True, max_length=max_length, add_special_tokens=False)["input_ids"],
            skip_special_tokens=True,
        )  # get prompt like trlx's prompt
        prompt_label[key.strip()] = summaries[i]

    for i in tqdm(range(len(val_prompts))):
        key = tokenizer.decode(
            tokenizer(val_prompts[i], truncation=True, max_length=max_length, add_special_tokens=False)["input_ids"],
            skip_special_tokens=True,
        )  # get prompt like trlx's prompt
        prompt_label[key.strip()] = val_summaries[i]

    trlx.train(
        reward_fn=reward_fn,
        prompts=prompts,
        eval_prompts=val_prompts,
        config=config,
    )