File size: 3,782 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
from typing import Dict, List

import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, pipeline

import trlx
from trlx.data.configs import (
    ModelConfig,
    OptimizerConfig,
    SchedulerConfig,
    TokenizerConfig,
    TrainConfig,
    TRLConfig,
)
from trlx.models.modeling_ilql import ILQLConfig


def get_positive_score(scores):
    "Extract value associated with a positive sentiment from pipeline's output"
    return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]


default_config = TRLConfig(
    train=TrainConfig(
        seq_length=128,
        epochs=100,
        total_steps=1000,
        batch_size=32,
        checkpoint_interval=1000,
        eval_interval=100,
        pipeline="PromptPipeline",
        trainer="AccelerateILQLTrainer",
        save_best=False,
    ),
    model=ModelConfig(
        model_path="lvwerra/t5-imdb",
        num_layers_unfrozen=-1,
        model_arch_type="seq2seq",
    ),
    tokenizer=TokenizerConfig(
        tokenizer_path="lvwerra/t5-imdb",
        padding_side="right",
        truncation_side="right",
    ),
    optimizer=OptimizerConfig(
        name="adamw",
        kwargs={
            "lr": 5.0e-5,
            "betas": [0.9, 0.999],
            "eps": 1.0e-8,
            "weight_decay": 1.0e-6,
        },
    ),
    scheduler=SchedulerConfig(
        name="cosine_annealing",
        kwargs={
            "T_max": 100000,
            "eta_min": 5.0e-5,
        },
    ),
    method=ILQLConfig(
        name="ILQLConfig",
        tau=0.7,
        gamma=0.99,
        cql_scale=0.1,
        awac_scale=1,
        alpha=0.001,
        beta=0,
        steps_for_target_q_sync=5,
        two_qs=True,
        gen_kwargs=dict(max_new_tokens=56, top_k=20, beta=4, temperature=1.0),
    ),
)


class LengthSampler:
    """
    Samples a length
    """

    def __init__(self, min_value, max_value):
        self.values = list(range(min_value, max_value))
        self.rng = np.random.default_rng(seed=2023)

    def __call__(self):
        return self.rng.choice(self.values)


def main(hparams={}):
    config = TRLConfig.update(default_config, hparams)

    def metric_fn(samples: List[str], **kwargs) -> Dict[str, List[float]]:
        sentiments = list(map(get_positive_score, sentiment_fn(samples)))
        return dict(sentiments=sentiments)

    sentiment_fn = pipeline(
        "sentiment-analysis",
        "lvwerra/distilbert-imdb",
        top_k=2,
        truncation=True,
        batch_size=256,
        device=0 if int(os.environ.get("LOCAL_RANK", 0)) == 0 else -1,
    )
    tokenizer = AutoTokenizer.from_pretrained("lvwerra/t5-imdb")

    def build_imdb_dataset_test(tokenizer, input_min_text_length=2, input_max_text_length=8):
        # load imdb with datasets
        ds = load_dataset("imdb", split="test")
        ds = ds.rename_columns({"text": "review"})
        ds = ds.filter(lambda x: len(x["review"]) > 200, batched=False)

        input_size = LengthSampler(input_min_text_length, input_max_text_length)

        def tokenize(sample):
            sample["review"] = sample["review"].replace("/>br", "")
            input_ids = tokenizer.encode(sample["review"])[: input_size()] + [tokenizer.eos_token_id]
            sample["query"] = tokenizer.decode(input_ids)
            return sample

        ds = ds.map(tokenize, batched=False)
        return ds

    dataset = load_dataset("imdb", split="train")
    prompts = dataset["text"]
    rewards = dataset["label"]
    val_prompts = build_imdb_dataset_test(tokenizer)["query"][0:100]

    trlx.train(
        samples=prompts,
        rewards=rewards,
        eval_prompts=val_prompts,
        metric_fn=metric_fn,
        config=config,
    )


if __name__ == "__main__":
    main()