Spaces:
Running
Running
import gradio as gr | |
import torch | |
import os | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
from datasets import load_dataset, Audio | |
import numpy as np | |
from speechbrain.inference import EncoderClassifier | |
# Load models and processor | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("tdnathmlenthusiast/speecht5_finetuned_German_dataset") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
# Load speaker encoder | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
speaker_model = EncoderClassifier.from_hparams( | |
source="speechbrain/spkrec-xvect-voxceleb", | |
run_opts={"device": device}, | |
savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb") | |
) | |
def create_speaker_embedding(waveform): | |
with torch.no_grad(): | |
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform)) | |
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) | |
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy() | |
return speaker_embeddings | |
# Load a sample from the dataset for speaker embedding | |
try: | |
dataset = load_dataset(""Thorsten-Voice/TV-44kHz-Full", "TV-2023.09-Hessisch", split="train", trust_remote_code=True) | |
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) | |
sample = dataset[10] | |
speaker_embedding = create_speaker_embedding(sample['audio']['array']) | |
except Exception as e: | |
print(f"Error loading dataset: {e}") | |
# Use a random speaker embedding as fallback | |
speaker_embedding = torch.randn(1, 512) | |
def text_to_speech(text): | |
# Clean up text | |
replacements = [ | |
("0", "zero"), | |
("1", "one"), | |
("2", "two"), | |
("3", "three"), | |
("4", "four"), | |
("5", "five"), | |
("6", "six"), | |
("7", "seven"), | |
("8", "eight"), | |
("9", "nine"), | |
("_", " ") | |
] | |
for src, dst in replacements: | |
text = text.replace(src, dst) | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder) | |
return (16000, speech.numpy()) | |
iface = gr.Interface( | |
fn=text_to_speech, | |
inputs="text", | |
outputs="audio", | |
title="German Text-to-Speech Using T5 by Tirtha Debnath ", | |
description="Enter German text to convert to speech" | |
) | |
iface.launch() |