Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import tqdm
|
|
2 |
from PIL import Image
|
3 |
import hashlib
|
4 |
import torch
|
5 |
-
import torch.nn.functional as F
|
6 |
import fitz
|
7 |
import threading
|
8 |
import gradio as gr
|
@@ -16,41 +15,9 @@ import os
|
|
16 |
import numpy as np
|
17 |
import json
|
18 |
|
19 |
-
cache_dir = '/data/
|
20 |
os.makedirs(cache_dir, exist_ok=True)
|
21 |
|
22 |
-
@spaces.GPU(duration=100)
|
23 |
-
def weighted_mean_pooling(hidden, attention_mask):
|
24 |
-
attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
|
25 |
-
s = torch.sum(hidden * attention_mask_.unsqueeze(-1).float(), dim=1)
|
26 |
-
d = attention_mask_.sum(dim=1, keepdim=True).float()
|
27 |
-
reps = s / d
|
28 |
-
return reps
|
29 |
-
|
30 |
-
@spaces.GPU(duration=100)
|
31 |
-
@torch.no_grad()
|
32 |
-
def encode(text_or_image_list):
|
33 |
-
global model, tokenizer
|
34 |
-
if (isinstance(text_or_image_list[0], str)):
|
35 |
-
inputs = {
|
36 |
-
"text": text_or_image_list,
|
37 |
-
'image': [None] * len(text_or_image_list),
|
38 |
-
'tokenizer': tokenizer
|
39 |
-
}
|
40 |
-
else:
|
41 |
-
inputs = {
|
42 |
-
"text": [''] * len(text_or_image_list),
|
43 |
-
'image': text_or_image_list,
|
44 |
-
'tokenizer': tokenizer
|
45 |
-
}
|
46 |
-
outputs = model(**inputs)
|
47 |
-
attention_mask = outputs.attention_mask
|
48 |
-
hidden = outputs.last_hidden_state
|
49 |
-
|
50 |
-
reps = weighted_mean_pooling(hidden, attention_mask)
|
51 |
-
embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy()
|
52 |
-
return embeddings
|
53 |
-
|
54 |
def get_image_md5(img: Image.Image):
|
55 |
img_byte_array = img.tobytes()
|
56 |
hash_md5 = hashlib.md5()
|
@@ -63,7 +30,7 @@ def calculate_md5_from_binary(binary_data):
|
|
63 |
hash_md5.update(binary_data)
|
64 |
return hash_md5.hexdigest()
|
65 |
|
66 |
-
@spaces.GPU(duration=
|
67 |
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
68 |
global model, tokenizer
|
69 |
model.eval()
|
@@ -90,8 +57,8 @@ def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
|
90 |
image_md5 = get_image_md5(image)
|
91 |
image_md5s.append(image_md5)
|
92 |
with torch.no_grad():
|
93 |
-
reps =
|
94 |
-
reps_list.append(reps)
|
95 |
images.append(image)
|
96 |
|
97 |
for idx in range(len(images)):
|
@@ -108,7 +75,7 @@ def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
|
108 |
|
109 |
return knowledge_base_name
|
110 |
|
111 |
-
@spaces.GPU
|
112 |
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
113 |
global model, tokenizer
|
114 |
|
@@ -128,23 +95,22 @@ def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
|
128 |
|
129 |
query_with_instruction = "Represent this query for retrieving relavant document: " + query
|
130 |
with torch.no_grad():
|
131 |
-
query_rep =
|
132 |
|
133 |
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
134 |
|
135 |
doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)
|
136 |
|
137 |
-
print(f"query_rep_shape: {query_rep.shape}, doc_reps_cat_shape: {doc_reps_cat.shape}")
|
138 |
similarities = torch.matmul(query_rep, doc_reps_cat.T)
|
139 |
|
140 |
topk_values, topk_doc_ids = torch.topk(similarities, k=topk)
|
141 |
|
142 |
topk_values_np = topk_values.cpu().numpy()
|
143 |
|
144 |
-
topk_doc_ids_np = topk_doc_ids.
|
145 |
|
146 |
similarities_np = similarities.cpu().numpy()
|
147 |
-
|
148 |
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]
|
149 |
|
150 |
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
|
@@ -204,10 +170,10 @@ def downvote(knowledge_base, query):
|
|
204 |
|
205 |
|
206 |
|
207 |
-
device = 'cuda'
|
208 |
|
209 |
print("emb model load begin...")
|
210 |
-
model_path = '
|
211 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
212 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
213 |
model.eval()
|
@@ -216,9 +182,8 @@ print("emb model load success!")
|
|
216 |
|
217 |
print("gen model load begin...")
|
218 |
gen_model_path = 'openbmb/MiniCPM-V-2_6'
|
219 |
-
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_path,
|
220 |
-
gen_model =
|
221 |
-
attn_implementation='sdpa', torch_dtype=torch.bfloat16)
|
222 |
gen_model.eval()
|
223 |
gen_model.to(device)
|
224 |
print("gen model load success!")
|
@@ -291,4 +256,4 @@ with gr.Blocks() as app:
|
|
291 |
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
|
292 |
|
293 |
|
294 |
-
app.launch()
|
|
|
2 |
from PIL import Image
|
3 |
import hashlib
|
4 |
import torch
|
|
|
5 |
import fitz
|
6 |
import threading
|
7 |
import gradio as gr
|
|
|
15 |
import numpy as np
|
16 |
import json
|
17 |
|
18 |
+
cache_dir = '/data/kb_cache'
|
19 |
os.makedirs(cache_dir, exist_ok=True)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def get_image_md5(img: Image.Image):
|
22 |
img_byte_array = img.tobytes()
|
23 |
hash_md5 = hashlib.md5()
|
|
|
30 |
hash_md5.update(binary_data)
|
31 |
return hash_md5.hexdigest()
|
32 |
|
33 |
+
@spaces.GPU(duration=100)
|
34 |
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
35 |
global model, tokenizer
|
36 |
model.eval()
|
|
|
57 |
image_md5 = get_image_md5(image)
|
58 |
image_md5s.append(image_md5)
|
59 |
with torch.no_grad():
|
60 |
+
reps = model(text=[''], image=[image], tokenizer=tokenizer).reps
|
61 |
+
reps_list.append(reps.squeeze(0).cpu().numpy())
|
62 |
images.append(image)
|
63 |
|
64 |
for idx in range(len(images)):
|
|
|
75 |
|
76 |
return knowledge_base_name
|
77 |
|
78 |
+
# @spaces.GPU
|
79 |
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
80 |
global model, tokenizer
|
81 |
|
|
|
95 |
|
96 |
query_with_instruction = "Represent this query for retrieving relavant document: " + query
|
97 |
with torch.no_grad():
|
98 |
+
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
|
99 |
|
100 |
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
101 |
|
102 |
doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)
|
103 |
|
|
|
104 |
similarities = torch.matmul(query_rep, doc_reps_cat.T)
|
105 |
|
106 |
topk_values, topk_doc_ids = torch.topk(similarities, k=topk)
|
107 |
|
108 |
topk_values_np = topk_values.cpu().numpy()
|
109 |
|
110 |
+
topk_doc_ids_np = topk_doc_ids.cpu().numpy()
|
111 |
|
112 |
similarities_np = similarities.cpu().numpy()
|
113 |
+
|
114 |
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]
|
115 |
|
116 |
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
|
|
|
170 |
|
171 |
|
172 |
|
173 |
+
device = 'cuda'
|
174 |
|
175 |
print("emb model load begin...")
|
176 |
+
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
|
177 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
178 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
179 |
model.eval()
|
|
|
182 |
|
183 |
print("gen model load begin...")
|
184 |
gen_model_path = 'openbmb/MiniCPM-V-2_6'
|
185 |
+
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_path, trust_remote_code=True)
|
186 |
+
gen_model = AutoModel.from_pretrained(gen_model_path, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
|
|
|
187 |
gen_model.eval()
|
188 |
gen_model.to(device)
|
189 |
print("gen model load success!")
|
|
|
256 |
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
|
257 |
|
258 |
|
259 |
+
app.launch()
|