File size: 10,115 Bytes
4599dc2
 
 
 
56e4893
4599dc2
 
619d8a5
4599dc2
 
 
 
 
 
 
 
 
619d8a5
5807a33
4599dc2
619d8a5
56e4893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4599dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5807a33
 
4599dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffd32f8
56e4893
4599dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5807a33
 
4599dc2
 
 
 
 
 
 
 
 
 
c0e4e6e
4599dc2
5807a33
4599dc2
36af6ab
4599dc2
 
 
 
 
5c2bfa7
4599dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5807a33
4599dc2
5807a33
 
 
4599dc2
 
5807a33
4599dc2
5807a33
 
 
 
 
9351239
 
5807a33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4599dc2
 
 
5807a33
4599dc2
5807a33
 
 
 
 
 
 
 
 
 
 
4599dc2
5807a33
4599dc2
 
5807a33
 
4599dc2
 
 
 
 
5807a33
4599dc2
 
5807a33
4599dc2
 
5807a33
4599dc2
 
 
5807a33
 
 
 
 
 
 
 
 
 
 
4599dc2
 
 
 
 
 
5807a33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import tqdm
from PIL import Image
import hashlib
import torch
import torch.nn.functional as F
import fitz
import threading
import gradio as gr
import spaces
import os
from transformers import AutoModel
from transformers import AutoTokenizer
from PIL import Image
import torch
import os
import numpy as np
import json

cache_dir = '/data/KB'
os.makedirs(cache_dir, exist_ok=True)

def weighted_mean_pooling(hidden, attention_mask):
    attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
    s = torch.sum(hidden * attention_mask_.unsqueeze(-1).float(), dim=1)
    d = attention_mask_.sum(dim=1, keepdim=True).float()
    reps = s / d
    return reps

@torch.no_grad()
def encode(text_or_image_list):
    global model, tokenizer
    if (isinstance(text_or_image_list[0], str)):
        inputs = {
            "text": text_or_image_list,
            'image': [None] * len(text_or_image_list),
            'tokenizer': tokenizer
        }
    else:
        inputs = {
            "text": [''] * len(text_or_image_list),
            'image': text_or_image_list,
            'tokenizer': tokenizer
        }
    outputs = model(**inputs)
    attention_mask = outputs.attention_mask
    hidden = outputs.last_hidden_state

    reps = weighted_mean_pooling(hidden, attention_mask)   
    embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy()
    return embeddings

def get_image_md5(img: Image.Image):
    img_byte_array = img.tobytes()
    hash_md5 = hashlib.md5()
    hash_md5.update(img_byte_array)
    hex_digest = hash_md5.hexdigest()
    return hex_digest

def calculate_md5_from_binary(binary_data):
    hash_md5 = hashlib.md5()
    hash_md5.update(binary_data)
    return hash_md5.hexdigest()

@spaces.GPU(duration=100)
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
    global model, tokenizer
    model.eval()
    
    knowledge_base_name = calculate_md5_from_binary(pdf_file_binary)
    
    this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
    os.makedirs(this_cache_dir, exist_ok=True)

    with open(os.path.join(this_cache_dir, f"src.pdf"), 'wb') as file:
        file.write(pdf_file_binary)

    dpi = 200
    doc = fitz.open("pdf", pdf_file_binary)
    
    reps_list = []
    images = []
    image_md5s = []

    for page in progress.tqdm(doc):
        # with self.lock: # because we hope one 16G gpu only process one image at the same time
        pix = page.get_pixmap(dpi=dpi)
        image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
        image_md5 = get_image_md5(image)
        image_md5s.append(image_md5)
        with torch.no_grad():
            reps = encode([image]).squeeze(0)
        reps_list.append(reps)
        images.append(image)

    for idx in range(len(images)):
        image = images[idx]
        image_md5 = image_md5s[idx]
        cache_image_path = os.path.join(this_cache_dir, f"{image_md5}.png")
        image.save(cache_image_path)

    np.save(os.path.join(this_cache_dir, f"reps.npy"), reps_list)

    with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f:
        for item in image_md5s:
            f.write(item+'\n')
    
    return knowledge_base_name

# @spaces.GPU
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
    global model, tokenizer

    model.eval()

    target_cache_dir = os.path.join(cache_dir, knowledge_base)

    if not os.path.exists(target_cache_dir):
        return None
    
    md5s = []
    with open(os.path.join(target_cache_dir, f"md5s.txt"), 'r') as f:
        for line in f:
            md5s.append(line.rstrip('\n'))
    
    doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy")).squeeze(1)

    query_with_instruction = "Represent this query for retrieving relavant document: " + query
    with torch.no_grad():
        query_rep = torch.Tensor(encode([query_with_instruction]))

    query_md5 = hashlib.md5(query.encode()).hexdigest()

    doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)

    print(f"query_rep_shape: {query_rep.shape}, doc_reps_cat_shape: {doc_reps_cat.shape}")
    similarities = torch.matmul(query_rep, doc_reps_cat.T)

    topk_values, topk_doc_ids = torch.topk(similarities, k=topk)

    topk_values_np = topk_values.cpu().numpy()

    topk_doc_ids_np = topk_doc_ids.cpu().numpy()

    similarities_np = similarities.cpu().numpy()

    images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]

    with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
        f.write(json.dumps(
            {
                "knowledge_base": knowledge_base,
                "query": query,
                "retrived_docs": [os.path.join(target_cache_dir, f"{md5s[idx]}.png") for idx in topk_doc_ids_np]
            }, indent=4, ensure_ascii=False
        ))

    return images_topk


def upvote(knowledge_base, query):
    global model, tokenizer

    target_cache_dir = os.path.join(cache_dir, knowledge_base)

    query_md5 = hashlib.md5(query.encode()).hexdigest()

    with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
        data = json.loads(f.read())

    data["user_preference"] = "upvote"

    with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
        f.write(json.dumps(data, indent=4, ensure_ascii=False))

    print("up", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))

    gr.Info('Received, babe! Thank you!')

    return


def downvote(knowledge_base, query):
    global model, tokenizer

    target_cache_dir = os.path.join(cache_dir, knowledge_base)

    query_md5 = hashlib.md5(query.encode()).hexdigest()

    with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
        data = json.loads(f.read())

    data["user_preference"] = "downvote"

    with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
        f.write(json.dumps(data, indent=4, ensure_ascii=False))

    print("down", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))

    gr.Info('Received, babe! Thank you!')

    return



device = 'cuda' 

print("emb model load begin...")
model_path = 'openbmb/VisRAG-Ret' # replace with your local model path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
model.eval()
model.to(device)
print("emb model load success!")

print("gen model load begin...")
gen_model_path = 'openbmb/MiniCPM-V-2_6'
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_path, attn_implementation='sdpa', trust_remote_code=True)
gen_model = AutoModel.from_pretrained(gen_model_path, trust_remote_code=True,
    attn_implementation='sdpa', torch_dtype=torch.bfloat16)
gen_model.eval()
gen_model.to(device)
print("gen model load success!")


@spaces.GPU(duration=50)
def answer_question(images, question):
    global gen_model, gen_tokenizer
    # here each element of images is a tuple of (image_path, None).
    images_ = [Image.open(image[0]).convert('RGB') for image in images]
    msgs = [{'role': 'user', 'content': [question, *images_]}]
    answer = gen_model.chat(
        image=None,
        msgs=msgs,
        tokenizer=gen_tokenizer
    )
    print(answer)
    return answer


with gr.Blocks() as app:
    gr.Markdown("# MiniCPMV-RAG-PDFQA: Two Vision Language Models Enable End-to-End RAG")
    
    gr.Markdown("""
- A Vision Language Model Dense Retriever ([minicpm-visual-embedding-v0](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0)) **directly reads** your PDFs **without need of OCR**, produce **multimodal dense representations** and build your personal library. 

- **Ask a question**, it retrieve most relavant pages, then [MiniCPM-V-2.6](https://huggingface.co/spaces/openbmb/MiniCPM-V-2_6) will answer your question based on pages recalled, with strong multi-image understanding capability. 

    - It helps you read a long **visually-intensive** or **text-oriented** PDF document and find the pages that answer your question.

    - It helps you build a personal library and retireve book pages from a large collection of books.

    - It works like a human: read, store, retrieve, and answer with full vision.
""")
    
    gr.Markdown("- Currently online demo support PDF document with less than 50 pages due to GPU time limit. Deploy on your own machine for longer PDFs and books.")
    
    with gr.Row():
        file_input = gr.File(type="binary", label="Step 1: Upload PDF")
        file_result = gr.Text(label="Knowledge Base ID (remember it, it is re-usable!)")
        process_button = gr.Button("Process PDF (Don't click until PDF upload success)")
    
    process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)

    with gr.Row():
        kb_id_input = gr.Text(label="Your Knowledge Base ID (paste your Knowledge Base ID here, it is re-usable:)")
        query_input = gr.Text(label="Your Queston")
        topk_input = inputs=gr.Number(value=5, minimum=1, maximum=10, step=1, label="Number of pages to retrieve")
        retrieve_button = gr.Button("Step2: Retrieve Pages")
    
    with gr.Row():
        images_output = gr.Gallery(label="Retrieved Pages")
    
    retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)

    with gr.Row():
        button = gr.Button("Step 3: Answer Question with Retrieved Pages")

        gen_model_response = gr.Textbox(label="MiniCPM-V-2.6's Answer")

        button.click(fn=answer_question, inputs=[images_output, query_input], outputs=gen_model_response)
    
    with gr.Row():
        downvote_button = gr.Button("🤣Downvote")
        upvote_button = gr.Button("🤗Upvote")
        
    upvote_button.click(upvote, inputs=[kb_id_input, query_input], outputs=None)
    downvote_button.click(downvote, inputs=[kb_id_input, query_input], outputs=None)

    gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")


app.launch()