Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,981 Bytes
4599dc2 80c1548 4599dc2 619d8a5 4599dc2 619d8a5 80c1548 4599dc2 619d8a5 76a6782 80c1548 76a6782 80c1548 4599dc2 029aeaf 4599dc2 029aeaf 4599dc2 76a6782 1bc6d88 4599dc2 5807a33 1bc6d88 5807a33 029aeaf 4599dc2 029aeaf 4599dc2 029aeaf 4599dc2 80c1548 4599dc2 76a6782 4599dc2 5807a33 4599dc2 b65fc25 4599dc2 029aeaf 4599dc2 80c1548 4599dc2 4b393ca 14d7f4d 80c1548 4599dc2 029aeaf 4599dc2 dc55a3a 4599dc2 80c1548 4599dc2 801b8dc 4599dc2 4784e2e 4599dc2 5807a33 80c1548 2e96b6b 5807a33 80c1548 4599dc2 5807a33 4599dc2 5807a33 80c1548 5807a33 76a6782 5807a33 4599dc2 099ac59 4599dc2 5807a33 bace9e3 5807a33 bace9e3 5807a33 bace9e3 5807a33 bace9e3 5807a33 bace9e3 5807a33 4599dc2 bace9e3 a038f64 4599dc2 1bc6d88 5807a33 bace9e3 4599dc2 bace9e3 4599dc2 3758246 5807a33 558ab5b 34db6c3 558ab5b 3758246 558ab5b 4599dc2 5807a33 4599dc2 5807a33 4599dc2 bace9e3 4599dc2 80c1548 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import tqdm
from PIL import Image
import hashlib
import torch
import torch.nn.functional as F
import fitz
import threading
import gradio as gr
import spaces
import os
from transformers import AutoModel
from transformers import AutoTokenizer
from PIL import Image
import torch
import os
import numpy as np
import json
cache_dir = '/data/KB'
os.makedirs(cache_dir, exist_ok=True)
@spaces.GPU
def weighted_mean_pooling(hidden, attention_mask):
attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
s = torch.sum(hidden * attention_mask_.unsqueeze(-1).float(), dim=1)
d = attention_mask_.sum(dim=1, keepdim=True).float()
reps = s / d
return reps
@spaces.GPU
@torch.no_grad()
def encode(text_or_image_list):
global model, tokenizer
if (isinstance(text_or_image_list[0], str)):
inputs = {
"text": text_or_image_list,
'image': [None] * len(text_or_image_list),
'tokenizer': tokenizer
}
else:
inputs = {
"text": [''] * len(text_or_image_list),
'image': text_or_image_list,
'tokenizer': tokenizer
}
outputs = model(**inputs)
attention_mask = outputs.attention_mask
hidden = outputs.last_hidden_state
reps = weighted_mean_pooling(hidden, attention_mask)
embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy()
return embeddings
def get_image_md5(img: Image.Image):
img_byte_array = img.tobytes()
hash_md5 = hashlib.md5()
hash_md5.update(img_byte_array)
hex_digest = hash_md5.hexdigest()
return hex_digest
def calculate_md5_from_pdf_path(pdf_file_path):
hash_md5 = hashlib.md5()
with open(pdf_file_path, "rb") as f:
file_content = f.read()
hash_md5.update(file_content)
return hash_md5.hexdigest()
@spaces.GPU
def add_pdf_gradio(pdf_file_path, progress=gr.Progress()):
global model, tokenizer
model.eval()
print(f"pdf_file_path: {pdf_file_path}")
knowledge_base_name = calculate_md5_from_pdf_path(pdf_file_path)
this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
os.makedirs(this_cache_dir, exist_ok=True)
with open(os.path.join(this_cache_dir, f"src.pdf"), 'wb') as file1:
with open(pdf_file_path, "rb") as file2:
file1.write(file2.read())
dpi = 200
doc = fitz.open(pdf_file_path)
reps_list = []
images = []
image_md5s = []
for page in progress.tqdm(doc):
# with self.lock: # because we hope one 16G gpu only process one image at the same time
pix = page.get_pixmap(dpi=dpi)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
image_md5 = get_image_md5(image)
image_md5s.append(image_md5)
with torch.no_grad():
reps = encode([image])
reps_list.append(reps)
images.append(image)
for idx in range(len(images)):
image = images[idx]
image_md5 = image_md5s[idx]
cache_image_path = os.path.join(this_cache_dir, f"{image_md5}.png")
image.save(cache_image_path)
np.save(os.path.join(this_cache_dir, f"reps.npy"), reps_list)
with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f:
for item in image_md5s:
f.write(item+'\n')
return knowledge_base_name
@spaces.GPU
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
global model, tokenizer
model.eval()
target_cache_dir = os.path.join(cache_dir, knowledge_base)
if not os.path.exists(target_cache_dir):
return None
md5s = []
with open(os.path.join(target_cache_dir, f"md5s.txt"), 'r') as f:
for line in f:
md5s.append(line.rstrip('\n'))
doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy"))
query_with_instruction = "Represent this query for retrieving relevant document: " + query
with torch.no_grad():
query_rep = torch.Tensor(encode([query_with_instruction]))
query_md5 = hashlib.md5(query.encode()).hexdigest()
doc_reps_cat = torch.cat([torch.Tensor(i) for i in doc_reps], dim=0)
print(f"doc_reps_shape: {doc_reps.shape}")
print(f"query_rep_shape: {query_rep.shape}, doc_reps_cat_shape: {doc_reps_cat.shape}")
similarities = torch.matmul(query_rep, doc_reps_cat.T)
topk_values, topk_doc_ids = torch.topk(similarities, k=topk)
topk_values_np = topk_values.squeeze(0).cpu().numpy()
topk_doc_ids_np = topk_doc_ids.squeeze(0).cpu().numpy()
similarities_np = similarities.cpu().numpy()
print(f"topk_doc_ids_np: {topk_doc_ids_np}, topk_values_np: {topk_values_np}")
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
f.write(json.dumps(
{
"knowledge_base": knowledge_base,
"query": query,
"retrived_docs": [os.path.join(target_cache_dir, f"{md5s[idx]}.png") for idx in topk_doc_ids_np]
}, indent=4, ensure_ascii=False
))
return images_topk
def upvote(knowledge_base, query):
global model, tokenizer
target_cache_dir = os.path.join(cache_dir, knowledge_base)
query_md5 = hashlib.md5(query.encode()).hexdigest()
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
data = json.loads(f.read())
data["user_preference"] = "upvote"
with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
f.write(json.dumps(data, indent=4, ensure_ascii=False))
print("up", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))
gr.Info('Received! Thank you very much!')
return
def downvote(knowledge_base, query):
global model, tokenizer
target_cache_dir = os.path.join(cache_dir, knowledge_base)
query_md5 = hashlib.md5(query.encode()).hexdigest()
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
data = json.loads(f.read())
data["user_preference"] = "downvote"
with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
f.write(json.dumps(data, indent=4, ensure_ascii=False))
print("down", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))
gr.Info('Received! Thank you very much!')
return
device = 'cuda'
print("emb model load begin...")
model_path = 'openbmb/VisRAG-Ret' # replace with your local model path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
model.eval()
model.to(device)
print("emb model load success!")
print("gen model load begin...")
gen_model_path = 'openbmb/MiniCPM-V-2_6'
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_path, attn_implementation='sdpa', trust_remote_code=True)
gen_model = AutoModel.from_pretrained(gen_model_path, trust_remote_code=True,
attn_implementation='sdpa', torch_dtype=torch.bfloat16)
gen_model.eval()
gen_model.to(device)
print("gen model load success!")
@spaces.GPU
def answer_question(images, question):
global gen_model, gen_tokenizer
# here each element of images is a tuple of (image_path, None).
images_ = [Image.open(image[0]).convert('RGB') for image in images]
msgs = [{'role': 'user', 'content': [question, *images_]}]
answer = gen_model.chat(
image=None,
msgs=msgs,
tokenizer=gen_tokenizer
)
print(answer)
return answer
with gr.Blocks() as app:
gr.Markdown("# VisRAG Pipeline: Vision-based Retrieval-augmented Generation on Multi-modality Documents")
gr.Markdown("""
- A Vision Language Model Dense Retriever ([VisRAG-Ret](https://huggingface.co/openbmb/VisRAG-Ret)) **directly reads** your PDFs **without need for OCR**, generates **multimodal dense representations** and assists in building your personal library.
- **Ask a question**, and it will retrieve the most relevant pages. Then, [MiniCPM-V-2.6](https://huggingface.co/spaces/openbmb/MiniCPM-V-2_6) will answer your question based on the recalled pages, utilizing its strong multi-image understanding capabilities.
- It assists you in reading **lengthy**, **visually-intensive** or **text-oriented** PDF documents, helping you locate pages that answer your questions.
- It enables you to build a personal library and retrieve book pages from a large collection of books.
- It works like a human: reading, storing, retrieving, and answering with full visual comprehension.
""")
gr.Markdown("- The current online demo supports PDF documents with fewer than 50 pages due to GPU time limitations. For longer PDFs and books, consider deploying it on your own machine.")
gr.Markdown("Thank you very much to [@bokesyo](https://huggingface.co/bokesyo) for writing the code.")
with gr.Row():
file_input = gr.File(file_types=["pdf"], label="Step 1: Upload PDF")
file_result = gr.Text(label="Knowledge Base ID (remember it, it is re-usable!)")
process_button = gr.Button("Process PDF (Don't click until PDF uploaded successfully)")
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
with gr.Row():
kb_id_input = gr.Text(label="Your Knowledge Base ID (paste your Knowledge Base ID here, it is re-usable):")
query_input = gr.Text(label="Your Queston")
topk_input = inputs=gr.Number(value=1, minimum=1, maximum=10, step=1, label="Number of pages to retrieve")
retrieve_button = gr.Button("Step2: Retrieve Pages")
with gr.Row():
gr.Examples(
examples=[
["main_figure.pdf", "e96dcf1ff7c0041bf67151fcd6351326", "What is RAG-V?"],
["main_figure.pdf", "e96dcf1ff7c0041bf67151fcd6351326", "How does RAG-V perform?"]
],
inputs=[file_input, kb_id_input, query_input],
)
with gr.Row():
images_output = gr.Gallery(label="Retrieved Pages")
retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
with gr.Row():
button = gr.Button("Step 3: Answer Question with Retrieved Pages")
gen_model_response = gr.Textbox(label="MiniCPM-V-2.6's Answer")
button.click(fn=answer_question, inputs=[images_output, query_input], outputs=gen_model_response)
with gr.Row():
downvote_button = gr.Button("🤣Downvote")
upvote_button = gr.Button("🤗Upvote")
upvote_button.click(upvote, inputs=[kb_id_input, query_input], outputs=None)
downvote_button.click(downvote, inputs=[kb_id_input, query_input], outputs=None)
gr.Markdown("By using this demo, you agree to share your usage data with us for research purposes, helping us improve the user experience.")
app.launch() |