File size: 11,042 Bytes
4599dc2
 
 
 
80c1548
4599dc2
 
619d8a5
4599dc2
 
 
 
 
 
 
 
 
f24f38e
619d8a5
80c1548
4599dc2
619d8a5
76a6782
80c1548
 
 
 
 
 
 
76a6782
80c1548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a6782
d111a09
4599dc2
5807a33
d111a09
 
4599dc2
f24f38e
f63f4f8
d111a09
4599dc2
 
2573e4b
4599dc2
d111a09
 
 
 
4599dc2
d111a09
 
 
 
2573e4b
 
d111a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2573e4b
d111a09
2573e4b
d111a09
2573e4b
4599dc2
2573e4b
 
d111a09
4599dc2
 
76a6782
4599dc2
 
 
5807a33
 
4599dc2
 
 
 
 
2573e4b
 
4599dc2
d111a09
 
e0d20ad
becce76
 
4599dc2
029aeaf
4599dc2
80c1548
4599dc2
 
 
80c1548
4599dc2
 
 
 
029aeaf
4599dc2
dc55a3a
4599dc2
 
80c1548
2573e4b
4599dc2
 
 
 
 
 
2573e4b
4599dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801b8dc
4599dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4784e2e
4599dc2
 
 
 
5807a33
80c1548
2e96b6b
5807a33
80c1548
4599dc2
 
5807a33
4599dc2
5807a33
 
 
 
80c1548
 
 
5807a33
 
 
 
 
76a6782
5807a33
 
 
 
 
 
 
 
 
 
 
 
4599dc2
 
 
099ac59
4599dc2
5807a33
bace9e3
5807a33
bace9e3
5807a33
bace9e3
5807a33
bace9e3
5807a33
bace9e3
5807a33
4599dc2
bace9e3
a038f64
4599dc2
 
d111a09
5807a33
bace9e3
4599dc2
 
 
 
bace9e3
4599dc2
3758246
5807a33
558ab5b
 
 
 
c5c6250
 
558ab5b
3758246
558ab5b
 
4599dc2
5807a33
4599dc2
 
 
5807a33
 
 
 
 
 
 
 
 
 
 
4599dc2
 
 
bace9e3
4599dc2
 
80c1548
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import tqdm
from PIL import Image
import hashlib
import torch
import torch.nn.functional as F
import fitz
import threading
import gradio as gr
import spaces
import os
from transformers import AutoModel
from transformers import AutoTokenizer
from PIL import Image
import torch
import os
import numpy as np
import json
import time

cache_dir = '/data/KB'
os.makedirs(cache_dir, exist_ok=True)

@spaces.GPU
def weighted_mean_pooling(hidden, attention_mask):
    attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
    s = torch.sum(hidden * attention_mask_.unsqueeze(-1).float(), dim=1)
    d = attention_mask_.sum(dim=1, keepdim=True).float()
    reps = s / d
    return reps

@spaces.GPU
@torch.no_grad()
def encode(text_or_image_list):
    global model, tokenizer
    if (isinstance(text_or_image_list[0], str)):
        inputs = {
            "text": text_or_image_list,
            'image': [None] * len(text_or_image_list),
            'tokenizer': tokenizer
        }
    else:
        inputs = {
            "text": [''] * len(text_or_image_list),
            'image': text_or_image_list,
            'tokenizer': tokenizer
        }
    outputs = model(**inputs)
    attention_mask = outputs.attention_mask
    hidden = outputs.last_hidden_state

    reps = weighted_mean_pooling(hidden, attention_mask)   
    embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy()
    return embeddings

@spaces.GPU
def add_pdf_gradio(pdf_file_list, progress=gr.Progress()):
    global model, tokenizer
    model.eval()

    print(pdf_file_list)
    
    pdf_file_list = sorted(pdf_file_list, key=lambda x: os.path.basename(x))
    print(pdf_file_list)
    knowledge_base_name = str(int(time.time()))
    this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
    os.makedirs(this_cache_dir, exist_ok=True)
    index2img_filename = []

    for pdf_file_path in pdf_file_list:
        with open(os.path.join(this_cache_dir, os.path.basename(pdf_file_path)), 'wb') as file1:
            with open(pdf_file_path, "rb") as file2:
                file1.write(file2.read())

    for pdf_file_path in pdf_file_list:

        print(f"Processing {pdf_file_path}")

        pdf_name = os.path.basename(pdf_file_path)

        dpi = 200
        doc = fitz.open(pdf_file_path)
        
        reps_list = []
        images = []

        for page in progress.tqdm(doc):
            # with self.lock: # because we hope one 16G gpu only process one image at the same time
            pix = page.get_pixmap(dpi=dpi)
            image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
            with torch.no_grad():
                reps = encode([image])
            reps_list.append(reps)
            images.append(image)

        for idx in range(len(images)):
            image = images[idx]
            cache_image_path = os.path.join(this_cache_dir, f"{pdf_name}_{idx}.png")
            image.save(cache_image_path)
            index2img_filename.append(os.path.basename(cache_image_path))

        np.save(os.path.join(this_cache_dir, f"{pdf_name.split('.')[0]}.npy"), reps_list)

    with open(os.path.join(this_cache_dir, f"index2img_filename.txt"), 'w') as f:
        f.write('\n'.join(index2img_filename))
        
    return knowledge_base_name

@spaces.GPU
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
    global model, tokenizer

    model.eval()

    target_cache_dir = os.path.join(cache_dir, knowledge_base)

    if not os.path.exists(target_cache_dir):
        return None
    
    with open(os.path.join(target_cache_dir, f"index2img_filename.txt"), 'r') as f:
        index2img_filename = f.read().split('\n')
    
    doc_list = [f for f in os.listdir(target_cache_dir) if f.endswith('.npy')]
    doc_list = sorted(doc_list)
    doc_reps = [np.load(os.path.join(target_cache_dir, f)) for f in doc_list]
    doc_reps_cat = torch.cat([torch.Tensor(i) for i in doc_reps], dim=0)
    doc_reps_cat = torch.cat([i for i in doc_reps_cat], dim=0)

    query_with_instruction = "Represent this query for retrieving relevant document: " + query
    with torch.no_grad():
        query_rep = torch.Tensor(encode([query_with_instruction]))

    query_md5 = hashlib.md5(query.encode()).hexdigest()

    print(f"query_rep_shape: {query_rep.shape}, doc_reps_cat_shape: {doc_reps_cat.shape}")
    similarities = torch.matmul(query_rep, doc_reps_cat.T)

    topk_values, topk_doc_ids = torch.topk(similarities, k=topk)

    topk_values_np = topk_values.squeeze(0).cpu().numpy()

    topk_doc_ids_np = topk_doc_ids.squeeze(0).cpu().numpy()

    similarities_np = similarities.cpu().numpy()
    print(f"topk_doc_ids_np: {topk_doc_ids_np}, topk_values_np: {topk_values_np}")
    images_topk = [Image.open(os.path.join(target_cache_dir, f"{index2img_filename[idx]}.png")) for idx in topk_doc_ids_np]

    with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
        f.write(json.dumps(
            {
                "knowledge_base": knowledge_base,
                "query": query,
                "retrived_docs": [os.path.join(target_cache_dir, f"{index2img_filename[idx]}.png") for idx in topk_doc_ids_np]
            }, indent=4, ensure_ascii=False
        ))

    return images_topk


def upvote(knowledge_base, query):
    global model, tokenizer

    target_cache_dir = os.path.join(cache_dir, knowledge_base)

    query_md5 = hashlib.md5(query.encode()).hexdigest()

    with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
        data = json.loads(f.read())

    data["user_preference"] = "upvote"

    with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
        f.write(json.dumps(data, indent=4, ensure_ascii=False))

    print("up", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))

    gr.Info('Received! Thank you very much!')

    return


def downvote(knowledge_base, query):
    global model, tokenizer

    target_cache_dir = os.path.join(cache_dir, knowledge_base)

    query_md5 = hashlib.md5(query.encode()).hexdigest()

    with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
        data = json.loads(f.read())

    data["user_preference"] = "downvote"

    with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
        f.write(json.dumps(data, indent=4, ensure_ascii=False))

    print("down", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))

    gr.Info('Received! Thank you very much!')

    return



device = 'cuda'

print("emb model load begin...")
model_path = 'openbmb/VisRAG-Ret' # replace with your local model path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
model.eval()
model.to(device)
print("emb model load success!")

print("gen model load begin...")
gen_model_path = 'openbmb/MiniCPM-V-2_6'
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_path, attn_implementation='sdpa', trust_remote_code=True)
gen_model = AutoModel.from_pretrained(gen_model_path, trust_remote_code=True,
    attn_implementation='sdpa', torch_dtype=torch.bfloat16)
gen_model.eval()
gen_model.to(device)
print("gen model load success!")


@spaces.GPU
def answer_question(images, question):
    global gen_model, gen_tokenizer
    # here each element of images is a tuple of (image_path, None).
    images_ = [Image.open(image[0]).convert('RGB') for image in images]
    msgs = [{'role': 'user', 'content': [question, *images_]}]
    answer = gen_model.chat(
        image=None,
        msgs=msgs,
        tokenizer=gen_tokenizer
    )
    print(answer)
    return answer


with gr.Blocks() as app:
    gr.Markdown("# VisRAG Pipeline: Vision-based Retrieval-augmented Generation on Multi-modality Documents")
    
    gr.Markdown("""
- A Vision Language Model Dense Retriever ([VisRAG-Ret](https://huggingface.co/openbmb/VisRAG-Ret)) **directly reads** your PDFs **without need for OCR**, generates **multimodal dense representations** and assists in building your personal library. 

- **Ask a question**, and it will retrieve the most relevant pages. Then, [MiniCPM-V-2.6](https://huggingface.co/spaces/openbmb/MiniCPM-V-2_6) will answer your question based on the recalled pages, utilizing its strong multi-image understanding capabilities.

    - It assists you in reading **lengthy**, **visually-intensive** or **text-oriented** PDF documents, helping you locate pages that answer your questions.

    - It enables you to build a personal library and retrieve book pages from a large collection of books.

    - It works like a human: reading, storing, retrieving, and answering with full visual comprehension.
""")
    
    gr.Markdown("- The current online demo supports PDF documents with fewer than 50 pages due to GPU time limitations. For longer PDFs and books, consider deploying it on your own machine.")
    gr.Markdown("Thank you very much to [@bokesyo](https://huggingface.co/bokesyo) for writing the code.")
    
    with gr.Row():
        file_input = gr.File(file_types=["pdf"], file_count="multiple", label="Step 1: Upload PDF")
        file_result = gr.Text(label="Knowledge Base ID (remember it, it is re-usable!)")
        process_button = gr.Button("Process PDF (Don't click until PDF uploaded successfully)")
    
    process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)

    with gr.Row():
        kb_id_input = gr.Text(label="Your Knowledge Base ID (paste your Knowledge Base ID here, it is re-usable):")
        query_input = gr.Text(label="Your Queston")
        topk_input = inputs=gr.Number(value=1, minimum=1, maximum=10, step=1, label="Number of pages to retrieve")
        retrieve_button = gr.Button("Step2: Retrieve Pages")

    with gr.Row():
        gr.Examples(
            examples=[
                [["main_figure.pdf"], "1731329324", "What is RAG-V?"],
                [["main_figure.pdf"], "1731329324", "How does RAG-V perform?"]
            ],
            inputs=[file_input, kb_id_input, query_input],
        )

    with gr.Row():
        images_output = gr.Gallery(label="Retrieved Pages")
    
    retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)

    with gr.Row():
        button = gr.Button("Step 3: Answer Question with Retrieved Pages")

        gen_model_response = gr.Textbox(label="MiniCPM-V-2.6's Answer")

        button.click(fn=answer_question, inputs=[images_output, query_input], outputs=gen_model_response)
    
    with gr.Row():
        downvote_button = gr.Button("🤣Downvote")
        upvote_button = gr.Button("🤗Upvote")
        
    upvote_button.click(upvote, inputs=[kb_id_input, query_input], outputs=None)
    downvote_button.click(downvote, inputs=[kb_id_input, query_input], outputs=None)

    gr.Markdown("By using this demo, you agree to share your usage data with us for research purposes, helping us improve the user experience.")


app.launch()