import random, time | |
import wandb | |
def train(project="st", entity=None, epochs=10): | |
run = wandb.init( | |
# Set the project where this run will be logged | |
project=project, | |
entity=entity, | |
# Track hyperparameters and run metadata | |
config={ | |
"learning_rate": 0.02, | |
"architecture": "CNN", | |
"dataset": "CIFAR-100", | |
"epochs": epochs, | |
}) | |
# This simple block simulates a training loop logging metrics | |
offset = random.random() / 5 | |
for epoch in range(1, epochs+1): | |
acc = 1 - 2 ** -epoch - random.random() / epoch - offset | |
loss = 2 ** -epoch + random.random() / epoch + offset | |
# 2️⃣ Log metrics from your script to W&B | |
wandb.log({"acc": acc, "loss": loss}) | |
time.sleep(0.1) | |
# Mark the run as finished | |
wandb.finish() |