tbitai commited on
Commit
ebc9c45
·
verified ·
1 Parent(s): c078837

Separate model names from display names

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -7,19 +7,26 @@ import numpy as np
7
 
8
  # Load models
9
 
10
- model_probs_path = hf_hub_download(repo_id="tbitai/bayes-enron1-spam", filename="probs.json")
 
 
 
 
 
 
11
  with open(model_probs_path) as f:
12
  model_probs = json.load(f)
13
 
14
- nn_model_path = hf_hub_download(repo_id="tbitai/nn-enron1-spam", filename="nn-enron1-spam.keras")
15
  nn_model = tf.keras.models.load_model(nn_model_path)
16
 
17
- llm_model_path = hf_hub_download(repo_id="tbitai/gisty-enron1-spam", filename="gisty-enron1-spam.keras")
18
  llm_model = tf.keras.models.load_model(llm_model_path)
19
  # Sentence Transformers should be imported after Keras models, in order to prevent it from setting Keras to legacy.
20
  from sentence_transformers import SentenceTransformer
21
  st_model = SentenceTransformer("avsolatorio/GIST-large-Embedding-v0")
22
 
 
23
  # Utils for Bayes
24
 
25
  UNK = '[UNK]'
@@ -70,12 +77,6 @@ def predict_llm(text):
70
  embedding = st_model.encode(text)
71
  return float(llm_model(np.array([embedding]))[0][0].numpy())
72
 
73
- MODELS = [
74
- BAYES := "Bayes Enron1 spam",
75
- NN := "NN Enron1 spam",
76
- LLM := "GISTy Enron1 spam",
77
- ]
78
-
79
  def predict(model, input_txt, unbiased, intr_threshold):
80
  if model == BAYES:
81
  return predict_bayes(input_txt, unbiased=unbiased, intr_threshold=intr_threshold)
 
7
 
8
  # Load models
9
 
10
+ MODELS = [
11
+ (BAYES := "bayes-enron1-spam", "Bayes Enron1 spam"),
12
+ (NN := "nn-enron1-spam", "NN Enron1 spam"),
13
+ (LLM := "gisty-enron1-spam", "GISTy Enron1 spam"),
14
+ ]
15
+
16
+ model_probs_path = hf_hub_download(repo_id=f"tbitai/{BAYES}", filename="probs.json")
17
  with open(model_probs_path) as f:
18
  model_probs = json.load(f)
19
 
20
+ nn_model_path = hf_hub_download(repo_id=f"tbitai/{NN}", filename="nn-enron1-spam.keras")
21
  nn_model = tf.keras.models.load_model(nn_model_path)
22
 
23
+ llm_model_path = hf_hub_download(repo_id=f"tbitai/{LLM}", filename="gisty-enron1-spam.keras")
24
  llm_model = tf.keras.models.load_model(llm_model_path)
25
  # Sentence Transformers should be imported after Keras models, in order to prevent it from setting Keras to legacy.
26
  from sentence_transformers import SentenceTransformer
27
  st_model = SentenceTransformer("avsolatorio/GIST-large-Embedding-v0")
28
 
29
+
30
  # Utils for Bayes
31
 
32
  UNK = '[UNK]'
 
77
  embedding = st_model.encode(text)
78
  return float(llm_model(np.array([embedding]))[0][0].numpy())
79
 
 
 
 
 
 
 
80
  def predict(model, input_txt, unbiased, intr_threshold):
81
  if model == BAYES:
82
  return predict_bayes(input_txt, unbiased=unbiased, intr_threshold=intr_threshold)