Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
import os | |
import io | |
import IPython.display | |
from PIL import Image | |
import base64 | |
get_completion = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base") | |
def summarize(input): | |
output = get_completion(input) | |
return output[0]['generated_text'] | |
import gradio as gr | |
def image_to_base64_str(pil_image): | |
byte_arr = io.BytesIO() | |
pil_image.save(byte_arr, format='PNG') | |
byte_arr = byte_arr.getvalue() | |
return str(base64.b64encode(byte_arr).decode('utf-8')) | |
def captioner(image): | |
base64_image = image_to_base64_str(image) | |
result = get_completion(base64_image) | |
return result[0]['generated_text'] | |
gr.close_all() | |
demo = gr.Interface(fn=captioner, | |
inputs=[gr.Image(label="Upload image", type="pil")], | |
outputs=[gr.Textbox(label="Caption")], | |
title="Image Captioning with BLIP", | |
description="Caption any image using the BLIP model", | |
allow_flagging="never") | |
demo.launch() |