the_captionator / app.py
tbdatasci's picture
Init
ada5f8b
raw
history blame
1.06 kB
from transformers import pipeline
import gradio as gr
import os
import io
import IPython.display
from PIL import Image
import base64
get_completion = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base")
def summarize(input):
output = get_completion(input)
return output[0]['generated_text']
import gradio as gr
def image_to_base64_str(pil_image):
byte_arr = io.BytesIO()
pil_image.save(byte_arr, format='PNG')
byte_arr = byte_arr.getvalue()
return str(base64.b64encode(byte_arr).decode('utf-8'))
def captioner(image):
base64_image = image_to_base64_str(image)
result = get_completion(base64_image)
return result[0]['generated_text']
gr.close_all()
demo = gr.Interface(fn=captioner,
inputs=[gr.Image(label="Upload image", type="pil")],
outputs=[gr.Textbox(label="Caption")],
title="Image Captioning with BLIP",
description="Caption any image using the BLIP model",
allow_flagging="never")
demo.launch()