Upload folder using huggingface_hub
Browse files- app.py +54 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import spaces
|
4 |
+
import subprocess
|
5 |
+
import gradio as gr
|
6 |
+
from huggingface_hub import login
|
7 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
8 |
+
|
9 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
10 |
+
login(os.environ.get("HF_TOKEN"))
|
11 |
+
|
12 |
+
model_id = "google/paligemma-3b-mix-448"
|
13 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
14 |
+
model_id, device_map={"": 0},
|
15 |
+
attn_implementation="flash_attention_2",
|
16 |
+
torch_dtype=torch.bfloat16,
|
17 |
+
)
|
18 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
19 |
+
model.eval()
|
20 |
+
|
21 |
+
|
22 |
+
@spaces.GPU()
|
23 |
+
def answer_question(image, prompt):
|
24 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
25 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
26 |
+
|
27 |
+
with torch.inference_mode():
|
28 |
+
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
29 |
+
generation = generation[0][input_len:]
|
30 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
31 |
+
|
32 |
+
return decoded
|
33 |
+
|
34 |
+
|
35 |
+
with gr.Blocks() as demo:
|
36 |
+
gr.Markdown(
|
37 |
+
"""
|
38 |
+
# PaliGemma
|
39 |
+
Lightweight open vision-language model (VLM). [Model card](https://huggingface.co/google/paligemma-3b-mix-448)
|
40 |
+
"""
|
41 |
+
)
|
42 |
+
|
43 |
+
with gr.Row():
|
44 |
+
prompt = gr.Textbox(label="Input", value="Describe this image.", scale=4)
|
45 |
+
submit = gr.Button("Submit")
|
46 |
+
|
47 |
+
with gr.Row():
|
48 |
+
image = gr.Image(type="pil", label="Upload an Image")
|
49 |
+
output = gr.TextArea(label="Response")
|
50 |
+
|
51 |
+
submit.click(answer_question, [image, prompt], output)
|
52 |
+
prompt.submit(answer_question, [image, prompt], output)
|
53 |
+
|
54 |
+
demo.queue().launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers.git
|
2 |
+
accelerate
|
3 |
+
torch
|