tastypear's picture
use official option to disable cache
0bf7de2 verified
import random
import requests
from base64 import b64decode
from flask import Flask, request, jsonify, Response, stream_with_context, render_template_string
from transformers import AutoTokenizer
def calc_tokens(text):
tokenizer = AutoTokenizer.from_pretrained("PJMixers/CohereForAI_c4ai-command-r-plus-tokenizer")
tokens = tokenizer.tokenize(text)
return len(tokens)
def calc_messages_tokens(json_data):
messages = json_data["messages"]
m_messages = []
user_count = 0
prompt = "<BOS_TOKEN>"
for message in messages:
if message["role"] == "system":
prompt += f"<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{message['content']}<|END_OF_TURN_TOKEN|>"
elif message["role"] == "user":
user_count += 1
prompt += f"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message['content']}<|END_OF_TURN_TOKEN|>"
elif message["role"] == "assistant":
prompt += f"<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{message['content']}<|END_OF_TURN_TOKEN|>"
else:
continue
prompt += "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
total_tokens = calc_tokens(prompt) + user_count + 1
return total_tokens + 10 # for robustness
app = Flask(__name__)
@app.route('/', methods=['GET'])
def index():
template = '''
<html>
<head>
<title>Command-R-Plus Chat API</title>
</head>
<body>
<h1>Command-R-Plus OpenAI Compatible API</h1>
<h1>You need to be a HF PRO user to use it.</h1>
<li>1. Create your token(as api key) <a target="_blank" href="https://huggingface.co/settings/tokens/new">[here]</a> by selecting "serverless Inference API".</li>
<li>2. Set `https://tastypear-command-r-plus-chat.hf.space/api" as the domain in the client configuration.</li>
If you have multiple keys, you can concatenate them with a semicolon (`;`) to use them randomly, e.g., `hf_aaaa;hf_bbbb;hf_...`
</body>
</html>
'''
return render_template_string(template)
def get_new_bearer(key):
data = "C1RvUWoZAjd+ZBUyIV1CXjB3ay1VCA98Im4rWH5gVlZbKS1aBjhYU2YjHyVFeDwvI3x9cy92Vw1bKS5VHFM5VU9QVmpiDxJ6EmNSP1EHOgV6dCEOKEdncCJ7YBZmKQlkF1AYSkBOc0hiNhFBBHRWUmNrDQBycjUIOF5/WD1LRyZ/BidjFmEuelxBU3B9IhVDAnV5TXQRMGxFUDkDDVRnWzNVYg9DAQJiIVEqfFtRcXd3Lgd5CFx/U3AMDA1jPA4APUtifgh7fid7BhxJE28bSnVtYmdVAQt/CkdJYl4NDCRZQiNsCktrcwh3RwBlHQJUFngmdU9/Xl5eKC54KWdZXlYbAClJZAAlESdcUjt2eA5GASpUAmgKUkJ2cGdyBDZQCkpxUVQXLB51fy83GFh4PgxXcilgHCBdHVsZWnJjb0JEMAhaGWpeen8GDDR9fCMtLGBbeDA7RQdtLxJJDksCYGJ4VWVvNiRZNX9Ab0MtDRJ6RTM2NEVaeyJ+XGtaAzphAFcHd09Vd2FEBStDBnZGXkgMBjdPRQARG2phfCJzfS9Kbw1LO0w4cE5VektlARFbGX1EZUwLISplZh8JGGRxVTZCTDdrLgE="
data = b64decode(data)
key = (key * (len(data) // len(key) + 1))[:len(data)]
data = (bytes([a ^ b for a, b in zip(data, key.encode())])).decode()
return random.choice(data.split('\n'))
@app.route('/api/v1/chat/completions', methods=['POST'])
def proxy():
headers = dict(request.headers)
headers.pop('Host', None)
headers.pop('Content-Length', None)
bearer = request.headers['Authorization'].split(' ')[1]
if(bearer.startswith('hf_')):
# for public usage
headers['Authorization'] = f"Bearer {random.choice(bearer.split(';'))}"
else:
# my private keys
headers['Authorization'] = f'Bearer {get_new_bearer(bearer)}'
headers['X-Use-Cache'] = 'false'
json_data = request.get_json()
# Use the largest ctx
json_data['max_tokens'] = 32768 - calc_messages_tokens(json_data)
json_data['json_mode'] = False
model = 'CohereForAI/c4ai-command-r-plus'
def generate():
with requests.post(f"https://api-inference.huggingface.co/models/{model}/v1/chat/completions", json=request.json, headers=headers, stream=True) as resp:
for chunk in resp.iter_content(chunk_size=1024):
if chunk:
yield chunk
return Response(stream_with_context(generate()), content_type='text/event-stream')
#import gevent.pywsgi
#from gevent import monkey;monkey.patch_all()
if __name__ == "__main__":
app.run(debug=True)
# gevent.pywsgi.WSGIServer((args.host, args.port), app).serve_forever()