Spaces:
Sleeping
Sleeping
tarrasyed19472007
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Process user query
|
2 |
def generate_answer(query, context, tokenizer, retriever, model):
|
3 |
# Tokenize the input question
|
4 |
inputs = tokenizer(query, return_tensors="pt")
|
5 |
-
|
|
|
6 |
context_input_ids = retriever(context, return_tensors="pt")["input_ids"]
|
|
|
|
|
7 |
inputs["context_input_ids"] = context_input_ids
|
|
|
|
|
8 |
outputs = model.generate(**inputs)
|
9 |
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
10 |
return answer[0]
|
@@ -23,4 +49,5 @@ if uploaded_file is not None:
|
|
23 |
user_query = st.text_input("Ask a question about the PDF:")
|
24 |
if user_query:
|
25 |
answer = generate_answer(user_query, text, tokenizer, retriever, model)
|
26 |
-
st.write(f"Answer: {answer}") #
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import PyPDF2
|
3 |
+
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
|
4 |
+
|
5 |
+
# Load PDF and extract text
|
6 |
+
def load_pdf(uploaded_file):
|
7 |
+
reader = PyPDF2.PdfReader(uploaded_file)
|
8 |
+
text = ""
|
9 |
+
for page in reader.pages:
|
10 |
+
if page.extract_text(): # Ensure text extraction is valid
|
11 |
+
text += page.extract_text() + "\n"
|
12 |
+
return text
|
13 |
+
|
14 |
+
# Initialize RAG model
|
15 |
+
def initialize_rag_model():
|
16 |
+
# Load the tokenizer and model
|
17 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
18 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="legacy", use_dummy_dataset=True)
|
19 |
+
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq")
|
20 |
+
return tokenizer, retriever, model
|
21 |
+
|
22 |
# Process user query
|
23 |
def generate_answer(query, context, tokenizer, retriever, model):
|
24 |
# Tokenize the input question
|
25 |
inputs = tokenizer(query, return_tensors="pt")
|
26 |
+
|
27 |
+
# Generate context embeddings using retriever
|
28 |
context_input_ids = retriever(context, return_tensors="pt")["input_ids"]
|
29 |
+
|
30 |
+
# Prepare inputs for the model
|
31 |
inputs["context_input_ids"] = context_input_ids
|
32 |
+
|
33 |
+
# Generate the answer
|
34 |
outputs = model.generate(**inputs)
|
35 |
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
36 |
return answer[0]
|
|
|
49 |
user_query = st.text_input("Ask a question about the PDF:")
|
50 |
if user_query:
|
51 |
answer = generate_answer(user_query, text, tokenizer, retriever, model)
|
52 |
+
st.write(f"Answer: {answer}") # Display the answer
|
53 |
+
|