Spaces:
Sleeping
Sleeping
tarrasyed19472007
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,3 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import PyPDF2
|
3 |
-
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
|
4 |
-
|
5 |
-
# Load PDF and extract text
|
6 |
-
def load_pdf(uploaded_file):
|
7 |
-
reader = PyPDF2.PdfReader(uploaded_file)
|
8 |
-
text = ""
|
9 |
-
for page in reader.pages:
|
10 |
-
text += page.extract_text() + "\n"
|
11 |
-
return text
|
12 |
-
|
13 |
-
# Initialize RAG model
|
14 |
-
def initialize_rag_model():
|
15 |
-
# Load the tokenizer and model
|
16 |
-
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
17 |
-
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="legacy", use_dummy_dataset=True)
|
18 |
-
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq")
|
19 |
-
return tokenizer, retriever, model
|
20 |
-
|
21 |
# Process user query
|
22 |
def generate_answer(query, context, tokenizer, retriever, model):
|
23 |
# Tokenize the input question
|
@@ -43,4 +23,4 @@ if uploaded_file is not None:
|
|
43 |
user_query = st.text_input("Ask a question about the PDF:")
|
44 |
if user_query:
|
45 |
answer = generate_answer(user_query, text, tokenizer, retriever, model)
|
46 |
-
st.write("Answer: {answer}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Process user query
|
2 |
def generate_answer(query, context, tokenizer, retriever, model):
|
3 |
# Tokenize the input question
|
|
|
23 |
user_query = st.text_input("Ask a question about the PDF:")
|
24 |
if user_query:
|
25 |
answer = generate_answer(user_query, text, tokenizer, retriever, model)
|
26 |
+
st.write(f"Answer: {answer}") # Corrected line with closing parenthesis
|